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Abstract. In this paper we present a new framework for an accelerated 3D 
reconstruction of deformable objects within a multi-view setup. It is based on a 
new memory management and an enhanced algorithm pipeline of the well 
known Image-Based Visual Hull (IBVH) algorithm that enables efficient and 
fast reconstruction results and opens up new perspectives for the scalability of 
time consuming computations within larger camera environments. As a result, a 
significant increase of frame rates for the volumetric reconstruction of 
deformable objects can be achieved using an optimized CUDA-based 
implementation on NVIDIA's Fermi-GPUs.  
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1   Introduction 

In this paper we present an efficient high resolution Image Based Visual Hull (IBVH) 
algorithm that entirely runs in real-time on a single consumer graphics card. The 
target application is a real-time motion capture system with a full body 3D 
reconstruction. The topic of 3D scene reconstruction based on multiple images has 
been investigated during the last twenty years and produced numerous results in the 
area of computer graphics and computer vision. Especially, real-time 3D 
reconstruction of target objects within a GPU environment has become one of the hot 
issues nowadays. 
Image based visual hull reconstruction (IBVH) is a 3D reconstruction technique from 
multiple images [1], which is based on the visual hull concept defined by Laurentini 
[2]. The visual hull of a 3D object is a conservative 3D shell, which contains the 3D 
object. The IBVH algorithm calculates the visual hull of a 3D object by intersecting 



the silhouette cones of the 3D object in several images. Whereas other 3D 
reconstruction techniques are often computationally intensive or limited to the 
reconstruction of  static 3D scenes [3,4,5], the IBVH algorithm can reconstruct the 3D 
visual hull of rigid and deformable objects. A common application scenario of 3D 
visual hull reconstruction from multi-view video channels is the acquisition, analysis 
and visualization of human movements. Corazza et al. estimate human body poses by 
fitting an articulated 3D model of a human into the reconstructed visual hull of a 
person [6]. Graf, Yoon and Malerczyk reconstruct the visual hull to give the user the 
possibility to inspect the deformable object from an arbitrary viewpoint [7]. While the 
user moves a virtual camera around the deformable object, new views of the object 
are synthesized in real-time from the point of view of the virtual camera. Whereas the 
visual hull based pose estimation proposed in [6] is an offline process, the 3D 
reconstruction for the synthesis of new views needs to be calculated in real-time [7]. 
The processing time of the visual hull reconstruction increases with the number of 
cameras and their resolution. On current state-of-the-art processors, the frame rate of 
the CPU-based IBVH algorithm on multi-view video channels [1] is not high enough 
for a smooth real-time visualization. 
However, the immense speed-up of the processing power of graphical processing 
units in the last few years allows for the development of very fast GPU based 3D 
reconstruction algorithms. 
The mapping of computer vision algorithms to the GPU can significantly accelerate 
their processing time. Here, Owens et al. present a broad survey about general-
purpose computations on graphics processors [8], Fung and Mann focus on the 
mapping of computer vision and image processing tasks to the GPU [9]. Rossi et. al 
[10] as well as Weinlich et al. [11] show that 3D reconstruction algorithms can be 
considerably accelerated by adapting reconstruction algorithms such that they can be 
executed on the GPU. Waizenegger et al. [12] as well as Ladikos, Benhimane and 
Navab [13] and Kim et al. [14] proposed GPU versions of visual hull 3D 
reconstruction algorithms. Whereas Ladikos, Benhimane and Navab [13] and Kim et 
al. [14] accelerate visual hull algorithms which use a voxel representation to explicitly 
reconstruct the 3D geometry, Waizenegger et al. [12] present a GPU version of image 
based visual hull reconstruction reducing the number of line segment intersection tests 
by a caching strategy. In this paper we also propose a GPU accelerated image based 
visual hull reconstruction algorithm. However, in contrast to [12], we focus on 
adapting the algorithm pipeline and its memory management such that they are 
optimized for the parallelized GPU architecture. 
Castano-Diez et al. evaluate the performance of image processing algorithms on the 
GPU [15]. They note that the speed-up which can be attained by mapping an 
algorithm to the GPU strongly depends on the characteristics of the algorithm itself: A 
high speed-up can be attained for algorithms which exhibit a high level of data 
parallelism (operations which are independent from one another) and which are 
characterized by a high number of sequentially and independently applied 
instructions. Whereas algorithms, which fulfill these requirements can benefit from a 
high speed-up if they are mapped to the GPU, memory access can significantly slow 
down the calculations. This is due to the fact that the GPU processing pipeline is not 
optimized for fast access of large amounts of memory. 



In this work we present a 3D reconstruction framework, which accounts for these 
requirements to attain a maximal speed-up of the reconstruction algorithm on the 
GPU with CUDA. The algorithm pipeline and the memory management of our 3D 
reconstruction framework have been carefully adapted to the inherent parallelism of 
GPU architectures. 

2   Concept 

We follow a photo-realistic 3D reconstruction methodology from multiple images that 
exploits camera calibration data and foreground extraction information. We extract 
the silhouette of a foreground object from an array of multiple static cameras using 
kernel density estimation based background subtraction. The IBVH algorithm 
computes a 3D volumetric reconstruction of a target object from its 2D projections 
captured from a sequence of images in different viewpoints (viewing rays). We 
consider a scene observed by n calibrated static cameras and we focus on the state of 
one voxel at position X chosen among the positions of the 3D lattice used to discretize 
the scene (figure 1). 

  
Fig. 1. Basic principle of the IVBH mechanism: on the left, different viewing rays and line 

intersections reconstructing the 3D lattice, on the right, the resulting target object (untextured).  

For the available silhouettes we assume, that each silhouette is represented by a 
binary array and the positions can be derived by using extrinsic and intrinsic 
calibration information of each camera. As a result of the IVBH we obtain a sequence 
of 3D intervals along each viewing ray. Those intervals contain the volumetric area of 
the target object. The proposed framework exploits the hardware features of recent 
consumer graphics cards and is deployed on a single graphic board. For our 
implementation we used an open source CPU implementation of the IBVH (Image 
Based Visual Hull) algorithm as proposed in [1]. In order to speed up the overall 
process chain, the algorithm pipeline and its memory management have been adapted 
to the inherent parallelized GPU architecture. Our concept is based on the subsequent 
strategies. 



2.1   Optimizing Memory Management for the 2D and 3D Intervals 

In order to fully exploit the parallelism of the CUDA architecture the computation of 
several viewing rays is mapped to individual CUDA threads. As a consequence, we 
are using as many CUDA threads as available viewing rays. If the maximum number 
of intersection points for each viewing ray is defined to nvr, the allocated memory 
block M for the computation of the intersection points is 

vr w h Ip Ip p Ip pM n I I n P ( x, y ), ( x, y ) I ,n I= ⋅ ⋅ ⋅ ⋅ ∀ ∈ =  
with Ip is the set of 3D intersection points, PIp the size of an intersection element at 
pixel value (x,y), Iw , Ih image width, resp. image height. In order to efficiently 
implement the overall memory consumption, memory access is realized in local areas 
rather than within global alignment procedures. Here, several threads within a CUDA 
WARP (smallest unit of threads (#32), capable of being physically executed in 
parallel by the multiprocessor) could access sequentially ordered data blocks, i.e. 
neighbored threads access sequentially ordered data sets. Thus, the pattern of memory 
storage resembles a volumetric lattice with multiple “image layers”. Within each 
“image layer” we store the intersection points of each corresponding viewing ray. 
The number of image layers complies with the maximum number of intersection 
points. 
The challenge we have been facing is, that the course of the sampling of the image 
along its epipolar lines (see figure 2) within each viewpoint is not optimal for a 
CUDA implementation.  

  
Fig. 2. Projection of viewing ray onto reference image (containing silhouette), left; traversal 

(sampling) of reference image along epipolar line, right. 
 
Coalesced memory access is not possible as the threads within a WARP typically 
cannot access the resulting, neighbored (and sequentially aligned) data sets. To reduce 
the negative impact on the performance, we store the silhouette images as textures. 
The use of textures is optimized for 2D memory access as the multiprocessor is 
capable of transferring 2D areas of an image into its texture cache. This strategy 
allows us to make use of the overall CUDA capability for fast texture cache access 



that is as fast and efficient as classical register access1. We achieve a further 
optimization by reducing the number of cache mismatches. This can be achieved by a 
“packaging” strategy for the silhouette images. Here, we condense the images to an 
image element (one byte for 8 images or two bytes for 16 images) that contains the 
information on multiple images (1 bit for 1 image2).  

2.2   GPU Adapted Silhouette-Line Intersection Algorithm  

For further memory optimization we adapted the Wedge-Cache algorithm described 
by Matusik [1] by adjusting the memory storage patterns for parallel processing on 
the GPU. The idea of the Wedge Cache algorithm is that the projections of the 
viewing rays onto the image plane lead to a 2D-cone. As a consequence projections of 
different rays may coincide and therefore induce the same epipolar lines, which have 
to be calculated once only and lead to a reduction of memory accesses. The algorithm 
uses indexed border pixels and therefore, it is possible to assign the epipolar lines, 
which are used for traversal to a specific wedge cache index, which is calculated as 
the furthest intersection point of epipolar lien and image border (see fig. 3). Each 
traversal of an epipolar line is implemented as a single GPU thread and therefore, the 
number of threads is reduced to 2*image width + 2*image height. Furthermore, all 
intersection points of epipolar lines with the object (silhouette) border are stored in 
the corresponding position (wedge cache index). 

 
Fig. 3. Projection of viewing rays onto the image plane and building the wedge cache 

indexes 

2.3   Efficient CUDA Alignment  

Within this step, we bundle the optimized calculation of silhouette line intersections 
(bundle of viewing rays) into a dedicated CUDA block. This again leads to an 

                                                             
1 Note: this is only possible if several threads within a CUDA block actually access the 

uploaded 2D area, otherwise it results in a cache mismatch. 
2 The silhouette images are stored in a binary array. 



increase of locally aligned memory access reducing the number of cache mismatches 
and avoiding longer latencies. The projections of bundles of rays lead to several 
epipolar lines on the image plane. Due to the fact that they distant against each other 
towards the image borders, their cache indexes may not be consecutive. Therefore, 
access to the wedge cache is due to the CUDA coalesced memory access only 
sequential possible. To avoid this we arrange the CUDA blocks in such a way that 
viewing rays in x- and y-direction are calculated within one block of the size 16*16 or 
32*32 (depending on the used GPU). 
Further on, we configure the execution of the CUDA kernels in such a way, that a 
CUDA block is capable of sampling multiple images along the epipolar line in 
parallel. Thus we reduce the cache mismatches by increasing the probability of 
successful memory accesses to the same 2D areas by several threads within one 
CUDA block. An alignment of the CUDA blocks according to the position of the 
epipole of the image plane leads to a further optimization in handling the CUDA 
memory. As to this position, not all areas of the wedge cache alignment have to be 
computed. We therefore achieve a higher degree of parallelism, which we deploy in 
the subsequent implementation.  

3   Implementation 

The GPU architecture is designed for massive parallel computations. It is necessary to 
use as much streams processors as possible at the same time to achieve a maximal 
computational power. Therefore, the original IBVH algorithm described by Matusik 
[1] has been adapted in such a way that all separately computable portions of the 
algorithm exploit the GPU's parallel capabilities. By executing multiple CUDA 
kernels in parallel, we fully deploy the GPU capacities and its utilization reducing the 
overall execution time for the 3D reconstruction by avoiding several time consuming 
memory access tasks within a local area rather than accessing global memory 
reducing the overall latency of data transfer. Especially the calculation of the 3D 
cones (as describes in the previous sections) allows a high degree of parallelism and 
therefore a vast amount of saving computational time due to the facts that is it 
possible to calculate all viewing rays independently. Nevertheless, the IBVH 
algorithm is obviously not parallelizable as a whole and parallelization has to be 
implemented in several sections that are executed sequentially: 

 

ComputeMatrixAndEpipols (); 

initializeViewingRayBuffer (); 

initializeWedgeCacheBuffer (); 

compressSilhouettes (); 

compute2DIntervals (); 

for each referenceImage r in R 



  computeViewingRayAndProjekt2DIntervalsBackIn3D (); 

  merge3DIntervals (); 

 
All methods of the pseudo code above are realized as separated CUDA kernels. 

3.1   Hardware Setup 

As usual for computer vision based algorithm that have to deal with real-time 
requirements, it is important to have an appropriate hardware setup at hand. For our 
system we use TheImagingSource3 DBK 21BF04 Firewire cameras with a VGA 
resolution of 640*480 pixels and 4mm lenses. Using a Bayer filter the cameras 
deliver up to 60 frames per second in 8-bit mode, which are converted to RGB images 
by de-mosaicing them under CUDA on the GPU. To ensure that all image tuples used 
for both calibration and reconstruction purposes are acquired exactly at the same time, 
the cameras are triggered by a 5 volts TTL signal. We use an USB-PIO device by 
BMC Messsysteme GmbH4, which features three 8-bit bidirectional ports and 
therefore allows to trigger up to 127 cameras simultaneously. All cameras are 
connected with BNC cables to a server PC, which is used to generate the trigger 
signals. Nevertheless, using multiple calibrated cameras for the reconstruction process 
leads to the typical bottleneck of vision-based systems dealing with a huge amount of 
data that have to be transmitted via several different busses. Both Firewire and PCI 
Express bus allow up to four cameras to be connected to a single PC. 
Therefore, we propose two different hardware setup approaches depending on the 
count of used cameras, one for up to four cameras with a single PC and one for five or 
more cameras using a network-based client-server architecture. 
The first system is able to build the visual hull out of up to four synchronous cameras, 
which are connected to a single PC, which is used for as well triggering the camera 
images as al image processing and computer vision tasks (see fig 4, left). 

Fig. 4. Hardware system setup: Up to four cameras connected to one single PC (left) and 
scalable setup for n cameras using a client/server architecture (right) 

 
Obviously, using only four cameras the reconstruction is limited to a restricted 
volume due to the fact that the target object has to be fully visible in all camera 

                                                             
3 http://www.theimagingsource.com/ 
4 http://www.bmc-messsysteme.de/us/ 

 



images at all time. To overcome this limitation more cameras surveying the 
interaction volume are used, which are connected to several PCs in a network. While 
two to four cameras each are connected to one client, one PC is used a the server 
triggering the cameras, performing the visual hull reconstruction on the GPU and 
rendering the output images. All other PCs are used as clients preprocessing the 
camera images with de-mosaicing the incoming images and performing the 
foreground extraction. Due to the fact that after silhouette extraction not all full 
images but run length encoded images of the silhouettes only are transmitted to the 
server PC, the system is able to perform with more than 40 frames per second using 
e.g. eight synchronous cameras. 

4   Evaluation 

We tested the CUDA-based implementation of the algorithm described in the 
previous sections on different setups. Due to the fact that only of-the-shelf hardware 
is used for the system setup, GPU tests were done with consumer graphics cards 
NVIDIA GeForce only. Parameters for the evaluation tests are the overall processing 
times in milliseconds running through the algorithm from the first to the last step of 
the algorithm (including visualization and data transfer from and to GPU) and the 
necessary memory used on the graphics board. The following table shows the results 
using five different graphic cards using setups with four, eight and sixteen cameras at 
three different levels of image resolutions. 

Table 1.  Framework benchmarks on different GPUs at different resolutions.  

GPU 16 
Cameras 

8 
Cameras 

4 
Cameras Resolution  

Memory 
Usage (16 
cameras) 

GeForce GTX 470 4.1 ms 2.7 ms 2.0 ms 320 x 240 429 Mb 
GeForce GTX 460 6.9 ms 3.8 ms 2.4 ms 320 x 240  
GeForce GTX 260 6.4 ms 3.7 ms 2.4 ms 320 x 240  
GeForce GTX 9800+ 10.4 ms 6.0 ms 3.8 ms 320 x 240  
GeForce GTX 8800 12.1 ms 7.0 ms 4.6 ms 320 x 240  

 
GeForce GTX 470 12.7 ms 7.5 ms 5.0 ms 640 x 480 651 Mb  
GeForce GTX 460 16.9 ms 9.1 ms 6.4 ms 640 x 480  
GeForce GTX 260 21.0 ms 12.0 ms 7.4 ms 640 x 480  
GeForce GTX 9800+ 38.7 ms 21.6 ms 13.6 ms 640 x 480  
GeForce GTX 8800 45.8 ms 26.6 ms 17.3 ms 640 x 480  

 
GeForce GTX 470 48.3 ms 28.5 ms 18.5 ms 1280 x 960 980 Mb  
GeForce GTX 460 64.0 ms 36.7 ms 23.4 ms 1280 x 960  
GeForce GTX 260 76.0 ms 43.7 ms 26.4 ms 1280 x 960  
GeForce GTX 9800+ 128 ms 78.3 ms 48.9 ms 1280 x 960  
GeForce GTX 8800 170 ms 98.0 ms 64.0 ms 1280 x 960  

 



5   Conclusion 

In this paper we presented a new framework for an accelerated 3D reconstruction of 
deformable objects within a multi-view setup. It is based on a new memory 
management and an enhanced algorithm pipeline that enables efficient and fast 
reconstruction results and opens up new perspectives for the scalability of time 
consuming computations within larger camera environments. As a result, a significant 
increase of frame rates for the volumetric reconstruction of deformable objects can be 
achieved. We tried to restrict several time consuming memory access tasks within a 
local area rather than accessing global memory reducing the overall latency of data 
transfer. Therefore, we adapted the proposed Wedge-Cache algorithm to the parallel 
nature of a GPU, leading to a reduction of inefficient memory access. As the 
projection of several viewing rays into a 2D plane is computational expensive 
resulting in a 2D cone, the use of the Wedge Cache algorithm avoids multiple 
calculations, as correspondent projections of multiple viewing rays into the image 
plane do not have to be recalculated again. Further on, we bundle the optimized 
calculation of silhouette-line intersections into a dedicated CUDA block. This again 
leads to an increase of locally aligned memory access reducing the number of cache 
mismatches and avoids longer latencies.  Finally, the proposed strategies lead to a 
higher degree of parallelism, which we can exploit, as the framework has been 
designed to execute several kernels in parallel (which is only possible on the new 
generation of graphic boards, e.g. NVIDIA Fermi-GPUs. 
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