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Abstract 

 

Assuring the quality of individual biometric samples is 

important for maintaining the discriminatory power of 

biometric recognition systems as biometric data of 

low-quality are likely to be mismatched. This paper pre-

sents an investigation into the assessment of the quality of 

handwritten signatures, predicting the performance or 

‘utility’ of individual signature samples in automated 

biometric recognition. The prediction of utility is based on 

multiple correlations with static and dynamic signature 

features. First, the utility of handwritten signature samples 

from publicly available databases is assessed by compar-

ing them with each other using commercial automatic 

signature verification engines. The samples are classified 

into four quality bins (excellent, adequate, marginal, and 

unacceptable quality) with totally ordered bin boundaries. 

Then, the correlation of multiple static and dynamic signa-

ture features with utility is analysed to find features that 

can be used for predicting the utility of samples. Our results 

show that it is possible to predict the utility of handwritten 

signature samples using a multi-feature vector. 

 

1. Introduction 

Not all handwritten signature samples donated to an 

automatic signature verification system are equally well 

suited for the automated recognition of the persons from 

whom they are acquired (see e.g. [1]). The ‘utility’ of a 

biometric sample, i.e. the usefulness of the sample for 

telling genuine and forged samples apart, can be expressed 

by a quality score assigned to that sample. The quality 

score of biometric samples can be used, for instance, for 

deciding whether the re-acquisition of data is deemed 

necessary [2] or for weighting partial results in multi- 

biometric systems. The question of how to objectively 

predict the utility of handwritten signature samples is the 

topic of this paper.  

The importance of a sample-based quality score across 

all biometric modalities is evidenced by the fact that fields 

for holding biometric sample quality scores have been 

introduced into several ISO/IEC biometric data structures 

[for example 3] thereby indicating the community’s and 

industry’s desire to store quality information within sample 

data formats. In these data formats if a biometric sample 

quality score is reported, valid values are integers between 

1 and 100 though some quality assessment algorithms such 

as [6] provide less than 100 valid quality values. Quality 

scores in the range 1–25 are to indicate unacceptable qual-

ity, in the range 26–50 marginal quality, in the range 51–75 

adequate quality, and quality scores in the range 76–100 

represent excellent quality.  

Related work on open-access public-domain algorithms 

for predicting the utility of biometric samples has concen-

trated on image-based biometric modalities such as finger 

images [6] and iris images [9]. For handwritten signatures, 

there are proprietary algorithms in use for assessing sample 

complexity during the enrolment process. Brault and 

Plamondon [10] have already introduced a coefficient of 

difficulty of imitation of handwritten signatures. Müller 

and Henniger [11] reported a correlation investigation 

between a number of signature features and utility scores 

estimated by comparing signature samples from a dataset 

with each other. Among the individual features that were 

assessed there were a number that allow a faint prediction 

of a signature’s production stability, but none that allow a 

prediction of a signature’s forgeability. Stronger cor-

relations with utility may be found by looking at feature 

vectors instead of individual features, as it has been done in 

[6] for the quality of finger images. Other studies [12] have 

utilised methods for the assessment of signature quality 

based on a forensic ‘attack’ assessment model and explored 

the effect on quality within the synthetic generation of 

signatures. This paper extends [11] by assessing a wider 

range of character features and exploring a multiple-feature 

correlation with utility.  

2. Measures of quality 

The quality of an individual biometric sample can be 

expressed through three separate elements: the character, 

the fidelity, and the utility of a sample [14]. Below is a 

description of each of the quality measures, and how it 

relates to handwritten signatures. 

Utility refers to the usefulness of an individual sample 

for telling genuine and forged samples apart. The utility of 

a genuine sample is high if the sample-specific false match 
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rate and false non-match rate both are low. Conversely, 

utility is low if the sample-specific false match rate and 

false non-match rate both are high. The sample-specific 

false match rate is the proportion of forgeries for a specific 

genuine sample falsely declared to match this sample. The 

sample-specific false non-match rate is the proportion of 

genuine samples from the same source as the specific 

genuine sample falsely declared not to match this sample. 

Due to differences in feature extraction and comparison 

algorithms, the utility of a specific sample depends on the 

particular comparator used. The utility of an individual 

sample can be estimated a-posteriori by comparing it with 

the corresponding genuine and forged samples from a 

database. Therefore, utility also depends on the underlying 

dataset.   

Character refers to measurable characteristics (or fea-

tures) from a particular sample. A signature with good 

character would be one that is a good representation of the 

typical signature from a user (i.e. signature characteristics 

showing low intra-individual variability) and that enables a 

comparator to distinguish between different signers (signa-

ture characteristics showing high inter-individual variabil-

ity and difficult to forge). A signature could be described as 

having poor character if the sample is too simple, resulting 

in low inter-individual variability or being easy to forge, or 

if an outside factor affected the signing process, producing 

an atypical signature for the signer in question. This, of 

course, is also influenced by the natural intra-signature 

variability within a subject’s samples [15]. An example of 

this may be if the signer produced an erroneous movement 

within the signing process, for instance by jolting the hand 

and introducing an anomalous writing stroke.  

Fidelity refers to the degree of similarity of the captured 

signature to the original signing process. The majority of 

factors influencing fidelity are related to issues of the data 

capture apparatus. In the case of a signature sample, high 

fidelity would be noted if the sample contains a high level 

of detail relating to the motion and position of the pen 

during the signing process. Fidelity may be affected by a 

number of factors in a dynamic signature capture environ-

ment: low spatial resolution within the capture device, 

inadequate capture device sensitivity to pressure, capture 

device sampling rate too low, electronic noise and jitter or a 

non-linear reporting characteristics of the capture device. 

With a static image capture environment (i.e. an image 

produced on paper and scanned) fidelity can also be 

affected in a number of ways: ink used not identified 

successfully by the optical reader, resolution of the scanner 

too low resulting in aliasing of an image or background 

noise is also recorded as part of the signature. 

3. Datasets 

Two publicly available signature datasets were used in 

the analysis:  

i) Dataset Two of the SVC (Signature Verification 

Competition) 2004 [17]: consists of 40 sets of signature 

data each from a different test subject. For each test subject 

the set contains 20 genuine signatures and 20 forged 

signatures produced by five other test subjects. The dataset 

therefore totals 800 genuine and 800 forged signatures. 

Note that the ‘genuine’ signatures were devised by each test 

subject specifically for the data collection. As they were not 

the signatures that the test subjects were familiar with for 

everyday purposes, they have a higher intra-individual 

variability than normal signatures do.  

ii) Signature subset of the MCYT dataset [18]: The data 

consists of 100 sets of signature data each from a different 

test subject. For each test subject the set contains 25 genu-

ine signatures and 25 forged signatures produced by five 

other test subjects. The dataset therefore totals 2500 genu-

ine and 2500 forged signatures. To create the forgeries, the 

potential impostors had the original signatures available on 

paper and were allowed to practice the signatures, to look at 

the original while forging, and even to retrace the original. 

Unlike the SVC database, the MCYT genuine signatures 

were real signatures used in day-to-day transactions. Sam-

ples were collected from test subjects over multiple time- 

separated sessions, with the aim of capturing the natural 

intra-individual variance present in signatures.  

The data stored for each signature consists in both data-

sets of a time series of data vectors containing information 

on pen coordinates, pressure, pen orientation and pen tip 

status (pen on or off the writing surface). We divide each 

dataset randomly into equally-sized disjoint training and 

testing subsets, leaving the subsets of signatures for the 

same test subject undivided. The training dataset is used to 

form ordinal regression models using selected feature data 

to predict utility. The testing data is used to examine 

whether the utility prediction models are unbiased. As both 

datasets contain samples captured under homogeneous 

conditions, a correlation between fidelity and utility cannot 

be calculated and therefore will not be considered in this 

study. The influence of fidelity could be observed by using 

samples captured with different devices and different 

temporal and spatial sampling rates. An influence of 

different capture devices on the utility of signature samples 

has been observed before [19] and has led to the specifica-

tion of best practices in data acquisition [20].  

 

4. A-posteriori assessment of sample quality 

The a-posteriori assessment estimates the utility of a 

genuine sample by comparing it with all other genuine and 

forged samples for the same signer. We utilise a 

four-compartment binning approach to sample-utility 

assignment. The obtained a-posteriori utility values form 

the basis for building a sample-quality prediction model 

later in Section 5.  
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Two signature verification SDKs were used to calculate 

the utility of signature samples. For the purposes of this 

study, the comparators are treated as ‘black boxes’ as we do 

not target at a comparative technology evaluation, but at a 

generalised sample quality assessment. Both systems are 

off-the-shelf commercial signature comparators that are 

deployed in real-life applications. In the following they are 

referred to as comparator 1 and comparator 2. As both 

systems are commercial engines not more is known about 

them than that they both make use of both dynamic and 

static features extracted from each signature. Both signa-

ture comparators return a continuous similarity score 

(ranging from 0 to 100) alongside a binary match/non- 

match decision about a template and the probe sample.  

Each of the two comparators forms an enrolment tem-

plate using three reference signatures, against which a 

probe signature is to be compared. In conducting the 

experiments we deviate slightly from general usage in that, 

alongside comparing the probe signature to a template 

formed by three genuine signatures, we assess forgery 

performance by comparing against a template formed by 

three skilled forgeries. In this way, we can compare an 

individual genuine signature (used as probe signature in 

both cases) against both genuine and forged signatures. 

For each of the comparators, the following method was 

used for each genuine signature: 

1. Template formation using three other genuine and, 

separately, three forged signatures of the same signer. 

Successful formation of a template was assessed using 

the default template formation score validation setting 

within the comparator.  

2. Successfully formed templates were used to verify the 

genuine signature using the comparator’s default ver-

ification threshold. The similarity score was noted for 

use in the utility prediction. 

Stages 1 and 2 described above were repeated for the 

formation of a total of six genuine and six forged templates 

for each genuine signature in the SVC 2004 dataset, using 

3 x 6 = 18 of the 19 other genuine signatures and 18 of the 

20 forged signatures available, and eight genuine and eight 

forged templates for each genuine signature in the public 

subset of the MCYT dataset, using 3 x 8 = 24 of the 24 

other genuine signatures and 24 of the 25 forged signatures 

available. All templates were formed using disjoint triplets 

of reference signatures.  

 

4.1. Binning utility assessment method 

The similarity scores from the two comparators are used 

to assign a utility score to each genuine sample. The utility 

scores increase with increasing quality. We follow an 

approach similar to that outlined in [6, 14] adapted to the 

available datasets and comparators and, in contrast to [6, 

14] enforcing totally ordered bin boundaries:  

 

I. For each of the available comparators ch, cnh 1   

( 2cn ), for each of the datasets Di, Dni 1   

( 2Dn ), and for each genuine signature j  Di:  

1. Compare j with the ngj templates formed from 

genuine signatures of the same person to produce 

ngj genuine similarity scores sgjk, gjnk 1 .  

2. Compare j with the nfj templates formed from 

forged signatures of the same person. The results 

are nfj impostor similarity scores sfjk, fjnk 1 . 

3. Insert j into set Τ if all its genuine similarity scores 

are larger than all its impostor similarity scores.  

4. Compute the arithmetic mean gjs and standard 

deviation gj of j’s ngj genuine similarity scores 

and the arithmetic mean 
fjs and standard devia-

tion fj of j’s nfj impostor similarity scores.  

5. Compute the normalised difference between the 

mean of genuine similarity scores and the mean of 

impostor similarity scores:  
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II. For each of the available comparators ch, cnh 1   

( 2cn ), for each of the datasets Di, Dni 1   

( 2Dn ), and for each genuine signature j  Di, bin j 

into one of L bins based on membership to T and zj. A 

strategy for L = 4 is shown in Table 1. Use the bin num-

ber assigned to a signature j as its utility score qjh 

regarding comparator ch.  

III. The rounded-up arithmetic mean of j’s utility scores is 

j’s nc overall utility score jq : 
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4.2. A-posteriori results 

The 3300 genuine signatures within the two datasets 

were binned as shown in Table 2. The majority of signa-

tures are not binned in broad agreement by the two com-

parators. For almost two thirds of the signatures, the utility 

bins assigned by the two comparators differ. This may be 

due to differences in the accuracy of the comparators or due 

to the fact that the comparators use different feature sets for 

comparison and that some signatures are more readily 

verifiable based on this or that feature set. This leads to the 

conclusion that a specialised quality prediction model may 
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be constructed for each comparator under consideration. 

However, it would be nice to construct a generic signature 

quality prediction model independent of particular com-

parators. A rounded-up average utility across the two com-

parators is computed as an overall utility score. Table 2 also 

shows the binning when the overall utility score is used.  

While in the MCYT dataset the overall utility of less than 

4% of the signatures is unacceptable or marginal, in the 

SVC 2004 dataset this is the case for more than 23% of the 

signatures. This shows that the quality of the devised 

signatures is lower than that of real signatures (see Sec-

tion 3).  
 

5. A-priori assessment of sample quality 

For the prediction of a sample’s quality, we establish 

correlations between multiple signature features and the 

overall utility scores. A vector of 69 commonly used global 

features was extracted from each signature. These features 

can be divided into two sub-groups: static features, relating 

to the drawn outcome of the signature, and dynamic fea-

tures, relating to temporal measurements from the signature 

production such as pen velocity and execution time. For the 

extraction of the static features, signature images have been 

recreated from the time-series data. Further information 

about these features can be found in [15]. 

The objective of a first experiment was to investigate 

whether individual features can be used to predict the utility 

of a sample. To explore the relationships between the 

individual features and the overall utility scores described 

in Section 4.1, correlation coefficients were calculated (the 

overall utility score for each signature was used rather than 

the dataset specific scores to assess the generic nature of the 

quality binning calculation). A significant strong cor-

relation between the overall utility score and a feature 

indicates a potential for the individual feature to reveal 

quality information about signature samples. Correlations 

were calculated across the two signature comparators and 

the two datasets, resulting in four correlation coefficients 

for each feature. Each correlation was tested for statistical 

significance.  

Observing the results from the features values to utility 

score correlations, it was obvious that none of the individ-

ual features were strongly correlated (the highest with a 

correlation of 0.18239 (number of pixels enclosed within 

loops). It is interesting to note, however, that there is a 

proportional mixture of static and dynamic features indi-

cating the importance of assessing constructional elements 

of signature formation alongside static shape and image- 

based measurement in the prediction of signature utility. 

Observing the mean correlations across all features for each 

of the various dataset and feature type groupings within the 

investigation reveals negligible differences, showing the 

generality of the technique.  

5.1. Correlation and modelling between multiple 

signature features and utility 

A number of features have shown individually signifi-

cant classification performance albeit with a low cor-

relation; however, jointly used, they provide a more 

accurate classification result. Whether the correlation 

between multiple signature features and utility is satisfac-

tory is investigated in this section.  

Let the features nxx ,,1  , which have been calculated 

for all available genuine signatures, be random potential 

“predictor variables”. There are four ordinal quality classes 

Qi in this study: the bin numbers or utility scores 1, 2, 3, 4. 

The classification task here is to determine which class is 

the most likely class of a sample based on the extracted 

features. A multiple regression equation for predicting the 

utility q can be expressed as follows:  

nnxbxbaqf  ...)( 11            (3) 

The values for a and bi, 1 ≤ i ≤ n, are determined in such 

a way that the probability that the utility class is correctly 

predicted from the observed values of the extracted features 

is maximised over all training data. Such criterion is 

referred to as Maximum Likelihood Estimation in the 

literature [16]. The left side of equation (3), i.e. the “crite-

rion variable”, is the multinomial logit [16] function of the 

predicted utility q. The logit function of utility score Qi is 

the natural logarithm of the odds of Qi, i.e. the ratio of the 

probabilities for and against Qi. The choice of modelling 

the logit function is preferable to modelling q itself, 

because q has an irregular distribution, while the logit of q 

follows a chi-square distribution.  

Utility prediction models were formed in SPSS using 

ordinal regression on the training sets. This process was 

undertaken in two stages for each model. Firstly all 

extracted features were entered into a modelling process 

and the output model noted in terms of each feature’s 

contribution to the output function. In the second stage only 

features that were flagged as making a significant con-

tribution to the model (p < 0.05) from the first stage were 

included in an ordinal regression process. The output model 

from the second stage formed the final model for a par-

ticular training set. To assign the ground-truth utility class 

membership to each sample (in both training and testing 

datasets), the overall utility (i.e. the rounded-up average of 

the utility scores obtained with the two different compara-

tors) was used.  

5.2. A-priori modelling results 

To assess the accuracy of each utility prediction model 

we divide each of the datasets into equally-sized, disjoint 

training and testing subsets and analyse the percentage of 

correctly identified utility class membership cases in the 

testing sets. We also assess the performance of optimally 

formed models from one dataset on samples from the other 
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dataset, thereby assessing the dataset-independence of a 

model. For assessing the performance of a general dataset- 

independent model, we form disjoint training and testing 

sets using an equal number of samples from each of the two 

datasets within each set. In this way we can assess the 

performance of a general dataset-independent model. 

Table 3 details the results of the utility prediction 

experiments arranged in accuracy order. The results show 

that the lowest prediction accuracy is achieved when the 

training and testing data come from different datasets. This 

confirms the expectation that the predicted value depends 

on the properties of the dataset used for training the pre-

dictor. There are large differences between signature styles 

in the SVC 2004 and MCYT datasets: While the SVC 2004 

dataset contains a great portion of Chinese characters, the 

MCYT dataset contains predominantly Spanish signatures. 

The properties of the dataset used for training the predictor 

should as much as possible reflect the properties of the data 

whose quality is to be predicted.  

We have also explored the ‘within-one binning accu-

racy’ – that the utility prediction model predicts a binning 

classification within +/- one bin accuracy. Table 6 shows a 

good ‘within-one binning accuracy’ as long as similar data 

are used for training and testing.  

The following nine features were selected by the regres-

sion method with a mix between dynamic (four) and static 

(five) features contributing to the model, again highlighting 

the contribution of including both types of information in 

an assessment: travel distance of pen on paper, maximum x 

acceleration, vertical median midpoint, (vertical median 

midpoint – ymin) / (ymax – ymin), x maximum jerk, y pixel 

centroid (mean pen-down y pixel position), x direction 

minimum velocity / x direction average velocity and 

moment p=0, q=1 on 'negative' image. These features may 

be considered in forming a generic quality prediction 

model. 
 

6. Conclusions and discussion 

In this paper we have presented our findings from experi-

ments to predict the utility of signature samples within 

automatic signature verification systems based on charac-

teristic feature vectors of those signature samples. Our 

results show that it is possible to predict the utility of a 

sample using a multi-feature vector as a predictor. The 

accuracy of the utility prediction depends on the training 

data used for building the utility prediction model. Our 

experiments show that the best results are obtained when a 

utility prediction system is tuned to a specific dataset and 

comparator. However, we have also shown that a generic 

model can be constructed which performs similarly to 

single dataset models. 

The more similar the training data is to real-life data, the 

more accurate the quality prediction will be. There may be 

a gap between skilled forgeries in signature datasets col-

lected for research purposes and those produced in practice, 

where forgers may be well motivated and skilled.   

The study shows that the proposed technique can have 

direct and transparent application within a practical auto-

matic signature verification implementation using both 

common static and dynamic features to predict sample 

quality. Of course, the features that we used as predictor 

variables, although commonly used within the community, 

may not be optimal in terms of quality prediction accuracy. 

For example, local features applied to specific regions of 

interest within the signature may yield improved cor-

relation. Nevertheless, this study has provided an insight 

into the features which may be practically used to provide 

foresight information on sample quality and performance 

within an automatic signature verification system. Further 

work will continue to expand the range of features 

explored, judicious selection of character features in an 

a-posteriori distance metric and further develop the 

multiple-regression modelling prototype study to produce a 

normalised quality metric.  
 

Table 3: Binning accuracy 

 

Training Testing 
Test 

Samples 

Binning 

Accuracy 

Within-1 

Binning 

Accuracy 

MCYT 

(train) 

MCYT 

(test) 
1250 68.72% 97.84% 

Combined 

(train) 

Combined 

(test) 
800 55.75% 97.75% 

SVC 

(train) 

SVC 

(test) 
400 55.00% 97.25% 

SVC (all) 
MCYT 

(all) 
2500 30.28% 75.40% 

MCYT 

(all) 
SVC (all) 800 20.50% 63.37% 
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Table 1: Binning Conditions 

 

Bin no. 

(utility 

score) 

Quality Binning condition Description 

4 Excellent j  T  
All genuine similarity scores are larger than any 

impostor similarity score. 

3 Adequate 
j  T and 

zj  min({zj: j  T})  

Some impostor similarity scores are larger than some 

genuine similarity scores, but zj is greater than or equal 

to that of some samples of excellent quality.  

2 Marginal 0 < zj < min({zj: j  T}) 
zj is lower than for any sample of excellent quality, but 

greater than 0.  

1 Unacceptable zj ≤ 0  
The mean of the impostor scores is greater than the 

mean of the genuine similarity scores. 

 
Table 2: Frequency Distribution of Utility Scores 

 

Bin no. 

(utility score) 
Quality 

MCYT dataset SVC dataset 

Frequency of  Frequency of 

Utility score regarding 

comparator 
Overall 

utility score 

Utility score regarding 

comparator 
Overall 

utility score 
1 2 1 2 

1 Unacceptable 51 2 1 49 11 4 

2 Marginal 357 208 91 366 250 183 

3 Adequate 1456 423 702 198 260 391 

4 Excellent 636 1867 1706 187 279 222 

 


