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Abstract

3D difference detection is the task to verify whether the 3D geometry of a real object exactly cor-
responds to a 3D model of this object. We present an approach for 3D difference detection with
a hand-held depth camera. In contrast to previous approaches, with the presented approach geo-
metric differences can be detected in real-time and from arbitrary viewpoints. The 3D difference
detection accuracy is improved by two approaches: First, the precision of the depth camera’s
pose estimation is improved by coupling the depth camera with a high precision industrial mea-
surement arm. Second, the influence of the depth measurement noise is reduced by integrating
a 3D surface reconstruction algorithm. The effects of both enhancements are quantified by a
ground-truth based quantitative evaluation, both for a time-of-flight (SwissRanger 4000) and a
structured light depth camera (Kinect). With the proposed enhancements, differences of few
millimeters can be detected from one meter measurement distance.
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1. Introduction

Depth cameras have evolved rapidly in the last years. They are able to acquire dense surface
measurements at an framerate of up to 30 frames per second. The most promising depth camera
technologies are time-of-flight depth cameras [1] [2] and structured light depth cameras (which
calculate the depth from patterns projected onto the scene), such as the Kinect depth camera
[3]. Whereas depth cameras are commonly used in the consumer mass market (for example in
gaming applications), up to now they are only seldomly used in industrial applications. This is
mainly due to the poor measurement quality of these depth cameras: Depending on the surface
properties of the measured object, the measured distance can differ from the real distance by
several centimeters at a distance from 0.5 to 5 meters.
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For industrial applications which require very precise 3D measurements, high-end laser scan-
ners are the technology of choice [4] [5]. While 3D imaging based on stereo vision requires a
texture on the scanned objects, laser scanners can accurately measure the shape of untextured ob-
jects. In contrast to other passive 3D distance estimation approaches such as shape from shadow
or shape from shading [6], laser scanners do not require previous knowledge about the surface
reflectance properties of the scanned objects or about the lighting of the scene. Just as laser
scanners, state of the art depth cameras (based on variants of structured light or time-of-flight
based depth imaging) neither require textures nor previous knowledge about the surface prop-
erties. While laser scanners offer a very accurate measurement precision (up to sub-millimeter
accuracy), they are very expensive and not always eye-safe. Furthermore, they usually only cap-
ture depth measurements along a single scan line per time instance, instead of a full depth image
as acquired by depth cameras. To acquire a complete 3D point cloud, these point- or line based
laser scanners need to sequentially scan the environment, either by automatically rotating parts
of the scan head [7][8] or with hand-held approaches [9]. Each scan takes several seconds to
several minutes. In contrast, depth cameras acquire dense 3D point clouds at interactive update
rates of up to 30 frames per second.

One application area which is strongly limited by the drawbacks of custom laser scanning
is 3D difference detection. This is the task to verify whether the 3D geometry of a real object
exactly corresponds to a 3D model of this object, or whether there are differences between the
3D model and the real object. This is of particular importance for industrial tasks such as pro-
totyping, manufacturing and assembly control. Despite their limited measurement accuracy, the
application of depth cameras for 3D difference detection has a lot of potential: Depth cameras are
low-cost devices which are able to capture the 3D surface of an object in real time, which can be
moved during data acquisition and which are eye-safe for the users. In contrast to stationary laser
scanners, the user can move the depth camera around the object. Thus, the user is not restricted
to a single viewpoint, but can inspect differences at arbitrary parts of the object from arbitrary
viewpoints in real time.

An application example for real-time geometric 3D difference detection based on dense real-
time 3D imaging with depth cameras is assembly control: After a worker has assembled several
parts of an object, geometric difference detection between a reference 3D model and the assem-
bled object can be used to check if each component was attached at the correct position. The
same approach can also be used to immediately detect differences during the assembly process
itself. Such a discrepancy check can for example be used to detect if a tube or a pipe was attached
to a different position than intended. Another application example is manufacturing and proto-
typing. Given a 3D model of the manufactured object or the prototype, a 3D discrepancy check
can detect differences between the 3D model and the constructed object which might occur due
to inaccuracies in the manufacturing process or due to changes during the prototyping process.
3D difference detection for construction is a third application area. After a building element or a
technical installation was constructed, 3D difference detection can be used to check whether the
constructed and installed elements really comply to the 3D specification.

The most important step for making the use of depth cameras feasible for industrial 3D dif-
ference detection is the algorithmic integration of methods which enhance the accuracy of depth
image based 3D difference detection, both in terms of the accuracy of the camera pose estimation
and in terms of an enhancement of the measurement quality. The work presented in this paper
was in parts developed in a cooperation between Fraunhofer and Volkswagen research, with the
goal to make the use of depth image based 3D difference detection feasible for industrial ap-
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plications. In this paper, we first explain how depth cameras can be used to detect differences
between an object and a 3D model of this object and describe the major sources for inaccuracies
in the 3D difference detection process (Section 2). In Section 3, we describe different methods
for estimating the camera pose and present our approach to enhance 3D difference detection with
a high precision pose estimation by a mechanical measurement arm. Section 4 gives an overview
of approaches for reducing depth measurement inaccuracies and describes the integration of a 3D
reconstruction algorithm [10][11] into the 3D difference detection pipeline. This on-the-fly 3D
reconstruction of the captured object surface reduces measurement inaccuracies by fusing depth
measurements from several depth images. Section 5 provides a quantitative evaluation based on
real 3D measurements with known ground truth data. This evaluation quantifies the achievable
accuracy of depth image based 3D differences detection, both for a Swissranger 4000 time-of-
flight depth camera and a structured light depth camera (Kinect). Furthermore, this evaluation
quantifies the accuracy enhancement of the 3D difference detection by the integration of the pro-
posed accuracy enhancement methods (high precision pose estimation with a measurement arm
and measurement enhancement by fusing several depth measurements). Finally, the evaluation
results are discussed in Section 6.

2. Geometric 3D Difference Detection

In the last years, first approaches for geometric 3D difference detection have been developed
which capture the real objects either with 2D cameras or with 3D depth cameras. After a brief
overview of the state-of-the art, this section describes the error sources which limit the accuracy
of depth image based geometric difference detection and which need to be overcome to make the
use of depth image based difference detection feasible for industrial applications.

2.1. 2D Camera based Difference Detection

The first solutions for camera based difference detection were based on still 2D images cap-
tured with 2D color cameras: In their pioneering work Georgel et al. presented an augmented
reality solution for discrepancy check in the context of construction planning [12] [13] [14].
Their system allows engineers to superimpose 2D photographs of a plant with the CAD model
developed during the planning phase. Whereas this augmentation of still 2D images with the 3D
model is very useful to visually compare the 3D model and the real scene, it is limited to the 2D
information contained in the images and provides no possibility to automatically compare the
3D data of the model with the 3D geometry of the real scene. Webel et al. presented a system
for AR discrepancy check with which the 3D positions of single points in the 3D model and the
real scene can be compared [15]: A laser pointer is used to depict a point on the surface of the
real scene. The 3D coordinate of the point is reconstructed by triangulation with a stereo camera
system. Whereas this approach allows the comparison of single 3D points, it is not suited for
dense 3D difference detection.

2.2. 3D Difference Detection with Depth Cameras

Kahn et al. presented an approach for real-time geometric 3D difference detection with a
hand-held depth camera [16] [17]. The depth camera is used to capture the distances to the sur-
face of an object. Then, the differences between these measurements and a 3D model of the
captured object are estimated for each acquired 3D measurement. Previous approaches using 3D
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measurements were either restricted to a static camera position [18] or required the manual spec-
ification of 3D correspondences between a laser scan of a construction site and a 3D model of
the construction site for each new scan position [19] [20], to transform both data sets into a com-
mon coordinate system. In contrast, the approach proposed for depth camera based difference
detection is feasible for interactive real-time 3D difference detection with a moving camera.

(a) Real object (b) Virtual 3D model (c) 3D point cloud (d) Visualized 3D differences

Figure 1: Depth image based 3D difference detection from arbitrary camera positions (early demonstrator).

Figure 1 shows an early, basic demonstrator for real-time geometric difference detection with
a hand-held depth camera. The coordinates of the square marker attached to the brick model
(Figure 1a) are specified in the coordinate system of the virtual 3D model (Figure 1b). By
detecting the image marker in the 2D camera image and estimating the camera pose with image-
based camera tracking, the position and orientation of the depth camera is calculated relative to
the 3D model’s coordinate system. Then, the 3D model is rendered from the estimated pose of
the depth camera to acquire an artifical depth image from the depth buffer of the graphics card.
Each such synthesized depth value is compared to the real depth measurement acquired by the
depth camera. Figure 1c shows a rotated view of the 3D point cloud acquired with a time-of-
flight depth camera. In Figure 1d, the detected differences are visualized with a color based
augmentation of the depth camera’s intensity image.

2.3. From First Approach to Improved Accuracy: Factors Which Cause Inaccuracies

While the difference detection of the previously described basic approach provides the basic
aspects for real-time depth image based 3D difference detection, it is far too inaccurate for being
applicable for industrial scenarios. With this basic approach, only very distinct differences can
be detected. The plate of the 3D model shown in Figure 1 has a size of 38× 38 cm. The distance
of the time-of-flight depth camera to the 3D model is about 50-90cm and only differences bigger
than 5cm are visualized. Reducing this difference visualization threshold could reveal smaller
differences. However, this would also cause the visualization of seeming differences which are
caused by inaccuracies in the difference detection process.

To make the use of depth cameras feasible for real-time geometric difference detection in
industrial applications, it is necessary to identify the factors which cause inaccuracies in the ge-
ometric difference detection process and to develop solutions which reduce these inaccuracies.
The causes for inaccuracies in the 3D difference detection process can be classified in two cate-
gories:

1. Inaccuracies in the depth camera’s pose estimation

• Inaccuracies of the pose estimation device
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• Inaccurate relative transformation between depth camera and pose estimation device

• Inaccurate alignment of world coordinate system and 3D model coordinate system

• Temporal offset between pose acquisition by pose estimation device and depth image
acquisition by depth camera

2. Measurement inaccuracies of the depth camera

• Random measurement noise

• Systematic measurement errors

• Motion blur effects (reducing the accuracy of 3D measurements)

Inaccuracies in the Depth Camera’s Pose Estimation. The pose of the depth camera can either
be estimated based on the data captured by the depth camera itself, or by an additional pose
estimation device (such as an additional, higher resolution 2D color camera used for the image
based camera tracking [16] [17]). Either way, inaccuracies in the pose estimation reduce the
accuracy of the difference detection. If an additional pose estimation device is used, the over-
all accuracy also depends on the accuracy of the estimated relative transformation between the
depth camera and the pose estimation device. Furthermore, the accuracy decreases if the world
coordinate system (in which the pose of the camera is estimated) is not correctly aligned with
the 3D model coordinate system (for example, if the 3D coordinates of the marker used for the
camera pose estimation are not very accurate). Finally, the accuracy also decreases if the depth
image was acquired at another timestamp than the time at which the pose was estimated. Sec-
tion 3 provides an overview of approaches which can be used to enhance depth image based 3D
difference detection by improving the pose estimation accuracy.

Measurement Inaccuracies of the Depth Camera. The depth measurements of depth cameras
are affected by random noise as well as by systematic errors. The random noise causes the
effect that even for a static scene and a static position of a depth camera, the measured distances
differ from frame to frame. For state-of-the art depth cameras, the random measurement noise is
typically stated to be about 1% of the distance to the camera [21]. The measurement noise can
be modelled with a Gaussian distribution. In contrast to the measurement noise, the systematic
errors are not characterized by varying distance measurements for a constant distance, but by a
systematic offset. For example, systematic errors occur due to reflections of specular surfaces
or due to a constant offset between the measured and the real differences in dependance of the
distance of the measured object to the camera center. The systematic errors are specific for each
different depth measuring technology and were evaluated in previous publications, both for time-
of-flight depth cameras [22] [23] [24] [25] and for the Kinect depth camera [26] [27]. The Kinect
depth sensing technology was developed by PrimeSense [28]. This depth sensing technology is
also used in other recent depth cameras, such as the Asus Xtion depth camera. Different depth
cameras based on the PrimeSense technology have very similar measurement properties [29].
Current state-of-the art depth cameras are usually either based on this technology, or on the
time-of-flight depth measurement principle. Section 4 provides an overview of approaches for
enhancing depth image based 3D difference detection by improving the accuracy of acquired
depth measurements.
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Figure 2: 3D difference detection pipeline.

Enhanced 3D Difference Detection Pipeline. Figure 2 provides an overview of the 3D difference
detection pipeline. This data flow diagram already contains the two approaches for enhancing
the accuracy of the 3D difference detection which are explained in the following two chapters:
high precision pose estimation with a Faro arm and accuracy enhancement of the 3D measure-
ments by a 3D surface reconstruction algorithm. In the basic approach for which results were
shown in Figure 1, the camera pose was estimated with a marker tracker. Furthermore, the 3D
reconstruction was not yet integrated into the pipeline.

3. Enhancing 3D Difference Detection with an Accurate Pose Estimation and Registration

For comparing a depth camera’s 3D measurements of an object with a 3D model of this
object, a correspondency problem needs to be solved: Which 3D measurement in the depth
image corresponds to which 3D position in the 3D model? For a depth camera, this task is
equivalent to the estimation of the position and orientation of the depth camera relative to the 3D
model. This section describes and discusses three possible approaches to solve this task: Image
based camera tracking, geometric registration of the depth images and pose estimation with a
high precision mechanical measurement arm.

3.1. Image based Camera Pose Estimation

Previous approaches for 3D difference detection used image based camera tracking for the
pose estimation [16][17] . With image based camera tracking, the camera pose can coarsely
be estimated from the intensity image of a time-of-flight depth camera. Another approach is
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to rigidly couple the depth camera with a higher resolution 2D color camera whose 2D image is
used for the camera tracking. In both cases, the camera pose can be estimated with a combination
of marker-based camera tracking and structure from motion 3D reconstruction [30]. While the
camera is moved, this approach detects and tracks characteristic image features [31][32]. Then
the 3D positions of the tracked features are reconstructed online via triangulation. Finally the
2D-3D correspondences between the 2D image coordinates of the tracked features and their
reconstructed 3D coordinates are used to calculate the camera pose if no marker is visible.

Image based camera pose estimation has the advantage that it can be computed efficiently
and that it is real-time capable. However, the accuracy of image based camera tracking strongly
depends on the captured scene: The camera pose can only be estimated with an image based
approach if enough stable, characteristic image features are visible in the captured camera im-
age. Thus, image based camera pose estimation cannot be used to estimate the camera pose in
environments that contain large surface parts which are uniformly colored and which are not well
textured. This is often the case in industrial scenarios, which might contain many untextured or
metallic materials which are difficult to track with image based camera pose estimation. Further-
more, the accuracy of image based camera tracking is sensitive to the distribution of the detected
features in the 2D camera image. The accuracy strongly decreases if the tracked features are not
evenly distributed in the whole camera image (for example, if features can only be found in a
part of the camera image). With image based camera pose estimation, the estimated camera pose
can differ from the real camera pose by several millimeters to centimeters, which strongly affects
the accuracy of the overall 3D difference detection approach.

3.2. Geometric 3D Registration
As an alternative to 2D image based camera tracking, the depth measurements acquired by

the depth camera can also be used to calculate the pose of the depth camera. The pose can either
be estimated by geometrically aligning the current depth image with the provided 3D model
or by aligning the current depth image with 3D measurements acquired from previous depth
images. The Iterative Closest Point algorithm [33] is a geometric registration algorithm which
can be used to align the current depth image with previously captured 3D data. This algorithm
iteratively estimates a transformation which minimizes the 3D distances between the depth image
and the 3D model or the previously reconstructed 3D point cloud. Geometric registration is
computationally very expensive (especially, if a large number of 3D-3D correspondences are
aligned to find a robust solution for the registration). Without massive subsampling, geometric
registration on the CPU is not real-time capable for the large number of 3D points captured by
a depth camera. In contrast to CPU based geometric registration, Newcombe et al. [10] showed
that a geometric real-time registration is feasible with a highly parallelized implementation on
a modern graphics card. Such a GPU-based registration could either be used as a standalone
method to estimate the pose of the depth camera, or it could be used to improve the accuracy of
a pose estimated with image based camera tracking. However, similar to image based camera
tracking, the achievable accuracy of camera pose estimation based on geometric features strongly
depends on the structure of the captured scene.

Geometric camera pose estimation requires the captured scene to be structured in such a way
that the camera pose can be calculated unambiguously from the depth image. This condition
is often not fulfilled. For example, if a depth camera captures several parallel pipes in front of
a wall, the camera pose cannot be calculated unambiguously from the depth image as there is
one degree of freedom along the pipes. The accuracy of geometric camera pose estimation also
depends on the movement path of the camera. For example, the camera pose often cannot be
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estimated robustly when the user moves the camera close to the surface to inspect details, or
when the user increases the distance between the camera and the object surface. Furthermore,
it is often not obvious whether the estimated camera pose and the geometric alignment have
drifted and need to be reset, and if so, how the pose estimation and the alignment can be robustly
re-initialized while keeping previously captured data.

3.3. Pose Estimation with a Precise Measurement Arm
Due to the drawbacks of both image based and geometric alignment based camera pose

estimation, we propose to use an industrial measurement arm for the pose estimation of the
depth camera. Such a mechanical measurement arm outputs a very precise pose estimation for
its measuring tip with a guaranteed precision better than 0.1mm. By rigidly coupling a depth
camera with the measuring tip of such a measurement arm, the pose of the depth camera can also
be estimated with a high precision. Figure 3 shows two depth cameras rigidly coupled with a
high precision Faro Platinum measurement arm. In contrast to both image based and geometric
alignment based pose estimation, the accuracy of the pose estimation is completely independent
of the captured scene. With a measurement arm, the camera pose estimation cannot fail due to
ambiguities or due to too few optical or geometric features. Thus, the user does not need to be
careful when moving the camera to avoid tracking loss. Instead, the user can fully concentrate
on the 3D difference detection task at hand. Figure 4 shows how a depth camera rigidly coupled
with a measurement arm can be used to detect differences between a real mockup and a 3D model
of this object.

(a) Kinect (b) SwissRanger 4000

Figure 3: Depth cameras coupled with a Faro measurement arm [34].

Pose estimation with a measurement arm has the advantage that only minimal computational
ressources are required for estimating the camera pose: The measurement arm internally esti-
mates the pose of the measurement tip by the rotational angles of its rotational joints and outputs
the pose of the point tip. Given the pose of the measurement tip, only the positional and rota-
tional offset between the depth camera and the measurement tip needs to be added to infer the
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pose of the depth camera from the pose of the measurement arm. This offset is calculated with
an offline hand-eye calibration [35] [36], which only needs to be calculated once for each depth
camera. For a depth camera, this relative transformation between the tip of the measurement arm
and the depth camera can be estimated in a similar way as the hand-eye calibration between a
robot (or a measurement arm) and a 2D color camera. Therefore, the 3D coordinates of a 2D
calibration pattern (for example a checkerboard or a well detectable marker) are measured with
the tip of the measurement arm. Then, the calibration pattern is detected in the 2D image of the
depth camera. Time-of-flight depth cameras directly measure an intensity (grey) value for each
captured pixel, which can be used to detect the marker. In contrast to time-of-flight cameras,
per default the depth camera of the Kinect only outputs a depth value per pixel and no color or
intensity information. However, for example with the OpenNI interface [37], the Kinect depth
camera can be switched from depth to infrared acquisition mode. Thus, it is possible to detect
the calibration pattern in the infrared image of the depth camera and to estimate the pose of the
Kinect depth camera based on the detected 2D pattern. Finally, the hand-eye transformation is
calculated from a large set of pose pairs where each pair stores the pose of the measurement arm
and the estimated pose of the depth camera (see [34] for details).

If the hand-eye calibration between the depth camera and the measurement arm was calcu-
lated with a high precision, the pose of a depth camera rigidly attached to a measurement arm
can be expected to be rather precise because the other causes for pose inaccuracies listed in
Section 2.3 are handled well by a measurement arm: First, the guaranteed precision of a Faro
measurement arm is better than 0.1 mm and thus much more precise than the accuracy of image
based camera tracking. Second, the surface of the real object can be measured very precisely
with the point tip of the measurement arm. Thus, the relative transformation between the real
object, the 3D model and the coordinate system of the measurement arm can be estimated with a
high precision. Third, using such an industrial measurement arm for the pose estimation also has
the advantage that it estimates the pose with a high update rate (>60fps). In comparison to pose
estimation with an unsynchronized color camera (<30fps), this minimizes the temporal offset
between the pose estimation and the acquisition of the depth images and thus contributes to an
enhancement of the overall accuracy.

4. Enhancing 3D Difference Detection by Reducing Measurement Noise

The accuracy of a depth camera based 3D difference detection strongly depends on the ac-
curacy of the acquired depth values. However, for current state-of-the art depth cameras, the
measured depth values can differ from the real distance by several millimeters to centimeters.
As described in Section 2.3, the measurement accuracy is decreased both by systematic mea-
surement errors and by random measurement noise. Several approaches have been proposed to
reduce the systematic measurement errors of specific depth cameras, both for different time-of-
flight depth cameras [22] [23] [24] [25] and for the Kinect depth camera [26] [27].

In contrast to previous approaches (which investigated depth camera calibration procedures
to reduce the systematic measurement errors), this section focuses on the reduction of the non-
systematic, random measurement noise. For static camera positions, the measurement noise can
be reduced easily by capturing several depth images from the same static camera position and
by averaging all depth values acquired at a pixel over time. However, this is not possible for a
moving depth camera because depth values acquired at a certain pixel correspond to different 3D
points of the captured scene.
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Figure 4: 3D difference detection with a Kinect depth camera and a Faro measurement arm.

For this reason, we conducted a literature research of approaches which can be used to reduce
the measurement noise for moving depth cameras. Most of these approaches are superresolution
methods, which either combine the depth image with information from an additional color image
or which fuse several depth images taken from close camera positions. However, recently an-
other approach (KinectFusion [10]) has been proposed. In contrast to superresolution methods,
this approach does not reconstruct a single improved depth image but reconstructs an implicit
3D surface representation of the captured scene. The remainder of this section describes both
superresolution and the surface reconstruction approach and discusses the applicability of these
approaches for 3D difference detection with a hand-held depth camera.

4.1. Superresolution
Superresolution methods improve the resolution and the quality of images, for example by

combining several images taken from very close camera positions. While early superresolution
methods were targeted at 2D images [38], recently also superresolution methods have been de-
veloped for depth images. Depth image based superresolution approaches can be divided into
two categories: First, methods which combine a depth image with a higher resolution 2D image.
Second, methods which fuse the depth data of several depth images.

Superresolution approaches which use a higher resolution 2D image for enhancing the depth
values of a depth image [39] [40] [41] are based on the assumption that the depth values correlate
with the color values of the 2D images. This assumption is met if depth edges in the depth image
correspond to color edges in the 2D image and if uniformly colored regions of the 2D image
correspond to depth image regions with similar depth values. To evaluate the applicability of su-
perresolution methods which combine a depth and a color image, we implemented a depth-color
based superresolution method [42]. For 3D scenes where the depth-color correlation assumption
is met, the accuracy of the depth image could indeed be increased by the information from the 2D
color image. However, in real-world scenarios we observed that this assumption often is not met
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(for example if a 3D object is uniformly colored, or if a planar surface has different colors). In
the latter case, the algorithm tends to estimate a relief in the depth image according to the color
edges in the 2D image, thus decreasing instead of increasing the accuracy of the depth image.

The second category of superresolution methods (which seek to enhance the depth accuracy
by fusing several depth images) is not based on the color-depth correlation assumption and is
thus better suited for enhancing the depth measurement accuracy in arbitrary scenarios [43] [44]
[45] [46]. While Paolini et al. [47] and Nagesh et al. [48] showed that it is in principle pos-
sible to execute superresolution algorithms on a GPU, currently all superresolution algorithms
proposed for fusing several depth images are offline algorithms, whose execution can take up to
several minutes [49]. These computationally intensive offline algorithms are currently not suited
for real-time applications with update rates of up to 30 frames per second. Furthermore, these
algorithms pose specific requirements for the acquisition of the input depth images (in view of
the feasible rotations and translations of the camera poses at which the input depth images are
acquired). Thus, superresolution algorithms fusing several depth images can well be used to re-
duce the measurement noise of depth images in scenarios where the user can move the camera
such that an optimal result is achieved by the superresolution algorithm [46][50]. However, su-
perresolution algorithms are less suited for enhancing the accuracy of depth measurements in a
real-time scenario where the user arbitrarily moves a hand-held depth camera around an object
to inspect 3D differences from arbitrary viewpoints.

4.2. Enhancing the Depth Measurement Accuracy with 3D Reconstruction based on a Truncated
Signed Distance Function

Recently, a depth image based 3D reconstruction algorithm has been proposed which fuses
depth images acquired with a hand-held depth camera into a consistent representation of the
captured object surface [10][11]. The ”KinectFusion” algorithm has met a lot of interest in the
computer vision community because it is real-time capable and because it can reconstruct object
surfaces with a high precision. The real-time capability is achieved by a highly parallel execution
of all calculation steps on the graphics card. Due to this massive parallelization, on a fast graphics
card the KinectFusion algorithm can align and fuse depth images acquired by a Kinect at a
framerate of up to 30 frames per second. An open source implementation of the KinectFusion
algorithm is integrated in the Point Cloud Library [51]. As the KinectFusion algorithm has been
described in detail by Newcombe et al. [10] and by Izadi et al. [11], we only briefly sketch its
basic principles and refer to the KinectFusion publications [10][11] for details.

To reconstruct the 3D surface of a captured scene, the KinectFusion algorithm discretizes the
3D space into a discrete voxel grid. Each voxel of the grid stores the value of a ”Truncated Signed
Distance Function” (TSDF) at the center of the voxel. This value of the TSDF at the voxel center
represents the distance of the voxel center to the closest reconstructed object surface. Points on
the object surface have the distance 0. For 3D points with a non-zero distance, the sign specifies
whether the voxel center is inside or outside the object surface. Reconstructing a 3D surface
with a TSDF has the advantage that the 3D measurements of several captured depth images are
merged for reconstructing the surface, which results in a more accurate surface estimation than
the surface estimated from a single depth image. Similar to averaging over time for a static
camera position, this merging step reduces measurement noise by fusing the data from several
measurements of the same surface position.

Whenever a new depth image is acquired, the new depth image is first aligned with the pre-
viously reconstructed 3D model. In the original KinectFusion algorithm, the alignment is based
on a point-plane variant of the Iterative Closest Point algorithm [33]. In contrast to the original

11



KinectFusion implementation, we do not use geometric alignment but rather the camera pose
estimated by a high precision measurement arm to align the new depth image with the previous
3D reconstruction. After the alignment of the new depth image with the 3D model has been
calculated, the data of the new depth image is merged with the estimation of the 3D surface
reconstruction by updating the value of the TSDF for each voxel of the grid. The TSDF is an im-
plicit surface representation which stores only the distances to the closest surface for discrete 3D
points in space, but no explicit representation of the surface itself. However, the reconstructed 3D
surface can be extracted from the implicit representation, either by the marching cubes algorithm
[52] or by ray casting an artificial depth image from a specified (virtual) camera pose.

3D Difference Detection with 3D Surface Reconstruction by the KinectFusion Algorithm. The
advantages of the KinectFusion algorithm in comparison to superresolution algorithms are that
the KinectFusion algorithm is real-time capable for framerates of up to 30 frames per second and
that it does not restrict the way the user can move the depth camera to detect differences between
the real object and the 3D model. For these reasons, we integrated the KinectFusion algorithm
into the 3D difference detection pipeline (see Figure 1), with the goal to enhance the accuracy
of the 3D difference detection by reducing the measurement noise of the captured depth images.
To integrate the KinectFusion algorithm with the 3D difference detection pipeline, each depth
image acquired by the depth camera is fed into the KinectFusion algorithm. The new depth
image is used to update the 3D surface reconstruction. Then, an artificial depth image of the
current 3D surface reconstruction is created by ray casting. From the current pose of the depth
camera, a ray is casted through each pixel of the virtual image of the depth camera. The depth
value of this pixel is calculated by intersecting the view ray with the zero crossing of the TSDF.
On a fast graphics card, both the update of the 3D surface reconstruction and the creation of
the artificial depth image can be calculated in real-time. Thus, instead of the real depth image
captured by the depth camera, the artificial depth image from the KinectFusion algorithm is fed
into the 3D difference detection algorithm. Then, the difference detection pipeline is executed the
same way as it would for the original depth image acquired by the depth camera. The accuracy
enhancement which can be achieved with this integration is quantified in Section 5.2.

5. Quantitative Evaluation

This section provides a quantitative evaluation of the accuracy of depth image based 3D
difference detection with different setups (marker based camera pose estimation, pose estimation
with a high precision measurement arm and depth measurements from a single depth image vs.
fused depth measurements from a reconstructed object surface).

A simulation-based evaluation of the general influence of inaccuracies in the camera pose
estimation and the influence of Gaussian depth measurement noise on the overall difference de-
tection accuracy was conducted in a previous publication [17]. While such a simulation provides
a first theoretical estimation about how the accuracy of 3D difference detection is influenced by
the accuracy of the pose and the 3D measurements, the outcome of the simulation depends on
the error model used for the simulation and not all real-world error sources (such as the specific
measurement characteristics of real depth cameras) can be modeled. However, to judge the appli-
cability of depth image based 3D difference detection for industrial scenarios, it is necessary to
get an estimation of the accuracy which can be achieved in real setups and with real depth cam-
eras. To our knowledge, this section provides the first quantitative evaluation of the measurement
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accuracy of depth cameras in hand-held sequences. Previous quantitative evaluations of the mea-
surement accuracy of depth cameras either focused on 3D measurements captured from static
camera positions [22] [23] [24] [25] [26] or quantitatively evaluated either a reconstructed 3D
model [27] or the accuracy of camera poses estimated based on depth images [53], but did not
quantitatively evaluate the measurement accuracy of moving depth cameras.

Depth Cameras. The quantitative evaluation is based on test sequences recorded with state-of-
the-art depth cameras (a SwissRanger 4000 time-of-flight depth camera and a Kinect structured-
light depth camera). For the SwissRanger 4000 camera, drivers from MesaImaging [21] were
used and the data from the Kinect was acquired with the OpenNI interface [37]. Both cameras
were calibrated intrinsically. In addition to the intrinsic parameters of the pinhole camera model,
the depth and color images were radially undistorted. The depth measurements were used as they
were output by the depth cameras, they were not adjusted by a depth calibration. All experiments
were conducted with another time-of-flight camera, a CamCube 3.0, as well. This depth cam-
era provides more 3D measurements per depth image than the SwissRanger 4000 (CamCube:
200 × 200 measurements, SwissRanger: 176 × 144 measurements). However, the results of the
CamCube were much less accurate than the accuracy of both the SwissRanger 4000 and the
Kinect depth camera. The measurement accuracy of the CamCube is more influenced by vary-
ing factors such as the operational temperature of the camera. These results are in accordance
with the experimental evaluation conducted by Piatti [54], who provides a very detailed accuracy
analysis of both a SwissRanger 4000 and a CamCube 3.0. In this section, we present the evalu-
ation results of the SwissRanger and the Kinect, which both provided significantly better results
than the CamCube 3.0.

Acquisition of Ground Truth Data. The main challenge for conducting a quantitative evalua-
tion of real measurements is the acquisition of ground truth data. For 3D difference detection, a
prerequisite for the quantitative evaluation is the availability of a 3D model which exactly corre-
sponds to the real object. For industrial objects, usually no 3D model is available which fulfills
this requirement with the necessary precision. For example, the 3D model of the object shown in
Figure 4 contains elements which are not part of the real object and vice versa and the 3D model
cannot be remodeled easily. The 3D model of the pipes used for 3D difference detection in a
previous publication [16] differs even more from the real pipes.

This is why we used the objects shown in Figure 5 for the quantitative evaluation. In com-
parison to other industrial test objects (such as the one from Figure 4), the 3D model of the
industrial, metallic object from Figure 5a matches the real 3D object rather well. Furthermore,
we used a 3D object with a curved surface (Figure 5b) for which a very precise 3D model exists
and a setup with several convex shapes (hemispheres, cubes, cylinders, cones and pyramids) with
different surface colors (white, grey, black). These convex shapes were rigidly attached to planar
boards. To create a 3D model of the combined evaluation object, first a separate 3D model was
created for each convex shape. Then, the surfaces of the real objects were measured with the
measurement tip of a Faro Platinum measurement arm. Finally, a point-triangle mesh variant
of the Iterative Closest Point algorithm [33] was used to exactly align each 3D model with the
measurement points on the real object. For the alignment, in total 115.000 3D points were mea-
sured on the surface of the convex objects with the Faro arm, 80.000 3D points on the object with
the curved surface and 24.000 3D points on the outer surface of the metallic object. After the
alignment, the average distance between the surface of the 3D model and the measurements on
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the surface of the real object was 0.3mm for the convex objects, 0.2mm for the object with the
curved surface and 0.1mm for the metallic object.

(a) Industrial, metallic evaluation object. (b) Evaluation object with curved surface.

(c) Convex evaluation objects with different surface properties.

Figure 5: Evaluation objects for quantitative ground truth evaluation.

For each evaluation object, a depth image sequence was captured both with a SwissRanger
4000 depth camera and with a Kinect depth camera. To acquire the evaluation sequences with
a constant framerate, the framerate was limited to 10 fps (the SwissRanger depth camera auto-
matically adjusts its integration time to the captured scene, so a higher framerate can only be
achieved if the integration time is less than 100ms). Each Kinect depth image sequence consists
of 500 to 800 frames, each SwissRanger 4000 depth image sequence of 4000 to 7000 frames.
More images were captured with the SwissRanger depth camera to get an equivalent number of
3D measurements - while the Kinect outputs 640× 480 depth values per frame, the SwissRanger
has a resolution of 176× 144 depth values. To compare the depth measurements with the ground
truth data (the distance from the camera to the surface of the 3D model), the 3D model was ren-
dered from the current pose of the depth camera. Then, the values of the rendering depth buffer
were compared to the depth values measured by the depth camera. For each captured sequence,
10 to 38 million 3D measurements on the surface of the evaluation object were compared to their
corresponding ground truth values from the rendered depth buffer.

5.1. Experiment 1: Enhancing the Accuracy of 3D Difference Detection with a High Precision
Pose Estimation

The purpose of this experiment was to quantify the 3D difference detection accuracy which
can be achieved when the camera pose is estimated either image based (with a marker tracker) or
with a mechanical measurement arm. For this experiment, the evaluation object with the curved
surface from Figure 5b was used. In the marker tracking mode, the pose was estimated from the
three square markers attached above the evaluation object. The Kinect contains both a built-in
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(a) SwissRanger 4000, marker based pose estimation. Median Difference (mm)
M

ed
ia

n 
D

iff
er

en
ce

 (m
m

)

0

10

20

30

40

50

60

70

Distance Camera - Surface (mm)
600 800 1.000 1.200 1.400

(b) Kinect, marker based pose estimation.
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(c) SwissRanger 4000, Faro pose estimation. Median Difference (mm)
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(d) Kinect, Faro pose estimation.
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(e) SwissRanger 4000, Faro pose estimation, diff. de-
tection based on reconstructed 3D model.
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(f) Kinect, Faro pose estimation, difference detection
based on reconstructed 3D model.

Figure 6: 3D difference detection accuracy for marker based pose estimation, measurement arm pose estimation and
measurement arm based pose estimation in combination with the 3D surface reconstruction algorithm. Evaluation object:
curved surface (Figure 5b).
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color and a depth camera. For the marker-based pose estimation with the Kinect, the relative
transformation between the color and the depth camera was calculated in an offline calibration
procedure. For evaluating the accuracy of 3D difference detection with a marker tracker for the
Kinect, the markers were tracked with the built-in 640 × 480 color camera and the pose of the
depth camera was inferred from the pose of the color camera by adding the previously calculated
relative transformation to the pose of the color camera. In contrast to the Kinect, the SwissRanger
depth camera does not contain an additional color camera, but measures an intensity (grey) value
for each captured depth measurement. The markers were tracked with this 176 × 144 intensity
image. Figure 6a and Figure 6b show the overall accuracy of the 3D difference detection when
the pose of the depth camera is estimated with a marker tracker.

To estimate the accuracy of 3D difference detection when the pose of the depth camera is
measured with a Faro measurement arm, in a second step the same sequences were evaluated
with a measurement arm based pose estimation. The pose of the depth camera was inferred
from the pose of the measurement arm by adding the previously calculated hand-eye calibration
(between the tip of the measurement arm and the depth camera) to the measured pose of the
Faro arm. Figure 6c and Figure 6d visualize the overall accuracy of the 3D difference detection
when the pose is estimated with a Faro measurement arm. The measurement arm based pose
estimation increases the accuracy for both depth cameras. This effect is more pronounced with
the SwissRanger depth camera because the marker based pose estimation of the SwissRanger is
less accurate than the marker based pose estimation of the Kinect camera. This is due to the lower
resolution of the SwissRanger’s 2D image used for the marker based camera pose estimation. The
accuracy of the 3D difference detection with the Kinect depth camera is increased as well.

5.2. Experiment 2: Enhancing the Accuracy of 3D Difference Detection with a 3D Surface Re-
construction Algorithm

This experiment was conducted to evaluate whether the accuracy of 3D difference detection
can further be improved if the 3D difference detection is based a reconstructed 3D model of the
captured object (instead of using a single depth image for the 3D difference detection). For this
purpose, the TSDF reconstruction step of the KinectFusion algorithm [10][11] was integrated in
the 3D difference detection pipeline as described in Section 4.2.

For each new depth image acquired by the depth camera, the new depth image is fed into
this algorithm to reconstruct the 3D surface of the captured object. In order to avoid the prob-
lems described in section 3.2, the external pose acquired from the measurement arm is used to
align the new depth measurements with the previously reconstructed 3D model. This replaces
the geometric alignment step of the original KinectFusion algorithm. After the reconstruction al-
gorithm has updated its 3D surface estimation with the data of the new depth image, an artificial
depth image is generated from the reconstructed 3D surface by raycasting. Instead of the depth
image currently captured by the depth camera, this raycasted depth image was fed back into the
3D difference detection pipeline and compared to the provided reference 3D model of the real
object. Figure 6e and Figure 6f show the overall accuracy of the 3D difference detection which is
achieved when the camera pose is estimated with a Faro measurement arm in combination with
the 3D surface reconstruction algorithm.

Figure 7 shows the accuracy of the 3D difference detection for the setup from Figure 4, both
with and without the integration of the 3D surface reconstruction algorithm. The color scale on
the right visualizes the color encoding of the measured differences (red: this pixel was measured
closer than represented by the 3D model, yellow: this pixel was measured to be farther away
than modeled). For example, the real gearshift differs from the modeled gear (both in view of its
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Figure 7: 3D difference detection based on single depth image (left) and with reconstructed 3D model (right).

position and its shape) and the wheel is part of the 3D model, but not of the built mockup. A pixel
is colored in black if the depth camera could not capture a depth measurement at this position
(and thus, no 3D difference could be calculated). The pixels colored in dark blue are not part
of the 3D model. The 3D surface reconstruction algorithm not only reduces the measurement
inaccuracies on large parts of the measured surface but also reduces the areas for which no 3D
difference could be calculated at all.

Figure 8: The reconstruction of the side of the center part improves step-by-step when captured from a more orthogonal
point of view.

In Figure 7, the right side of the central element is colored in yellow although it does not
differ much from the provided 3D model. This is because the previously recorded depth images
were captured from a frontal view of the whole object. In the frame visualized in Figure 7, the
camera has only just begun to move to the right. When the camera continues to be moved to the
right (and to capture the right side of the central element from a more orthogonal point of view),
the reconstruction of this part of the captured object improves frame-by-frame (see Figure 8).
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Enhancing the Accuracy with 3D Reconstruction, but without High Precision Pose Estimation.
Measurement arms provide a high precision pose estimation, but are significantly more expensive
than a depth camera. Therefore, we also evaluated the accuracy of a setup which does not require
a measurement arm. In this setup, the camera pose is estimated with a marker tracker and the
accuracy of the 3D difference detection is enhanced with the 3D surface reconstruction algorithm.

Table 1 provides the numerical values of the 3D difference detection accuracy with the Kinect
depth camera for the marker based pose estimation and for the pose estimation with a Faro mea-
surement arm, both with and without the accuracy enhancement by the 3D surface reconstruction.
Both the measurement arm based pose estimation and the 3D reconstruction algorithm improve
the overall accuracy of the 3D difference detection. The best accuracy is achieved when these
two approaches are combined. For the Kinect, the setup ”marker pose with 3D reconstruction”
also provides good results with a much more cost-effective hardware solution. The main draw-
back of the setup ”marker pose with 3D reconstruction” is not so much the accuracy, but rather
the fact that the marker always needs to be visible in the depth camera image.

Distance Kinect Marker pose Marker pose Faro pose Faro pose
camera - surface without 3D rec. with 3D rec. without 3D rec. with 3D rec.

450-599 6.54 7.76 3.70 1.96
600-749 10.34 10.71 4.88 4.41
750-899 8.40 6.50 6.87 4.80
900-1049 11.34 8.54 10.84 7.30

1050-1199 23.39 13.37 18.97 11.88
1200-1349 38.56 22.81 26.24 14.31
1350-1499 48.78 39.85 38.26 20.31
1500-1649 64.49 48.35 50.58 24.11

Table 1: Median difference between 3D measurements and ground truth (numerical values of Figure 6 for difference
detection with a Kinect depth camera). Additionally, the results of the setup ”marker pose with 3D reconstruction” are
provided, which can be used without a measurement arm. All values are in mm.

In contrast to the Kinect, the 3D difference detection of the SwissRanger 4000 could not
be improved by the 3D reconstruction algorithm when a marker tracker was used for the pose
estimation. As the pose can only be estimated very coarsely with a marker tracker on the low
resolution intensity image of such a depth camera, most of the errors visualized in Figure 6a were
caused by errors in the pose estimation. Thus, they can not be smoothed out by the 3D surface
reconstruction algorithm, which is based on the pose estimation to reconstruct the 3D surface.

5.3. Experiment 3: Influence of the Angle on the Measurement Accuracy
To quantify the effect of the measurement angle on the measurement accuracy, the accuracy

of the 3D difference detection was evaluated as a function of the measurement angle. First, the
surface normal of the object surface was calculated for each pixel of the depth buffer image
acquired from the rendered 3D model. Then, the angle between the surface normal and the view
ray from the optical center of the depth camera through the current pixel was calculated. This
angle varies between 0◦ and 90◦. Figure 9 visualizes the accuracy of the difference detection as a
function of the measurement angle. The influence of the measurement angle is plotted for three
different setups (the evaluation objects from Figure 5a, Figure 5b and the white convex objects
from Figure 5c). For both cameras, the measurement accuracy decreases for large angles of more
than about 60◦.
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(a) SwissRanger 4000, Faro pose estimation, curved sur-
face.
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(b) Kinect, Faro pose estimation, curved surface.
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(c) SwissRanger 4000, Faro pose estimation, metallic
object.
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(d) Kinect, Faro pose estimation, metallic object.

Median Difference (mm)

M
ed

ia
n 

D
iff

er
en

ce
 (m

m
)

0

20

40

60

80

100

Angle Camera - Surface (Degrees)
20 40 60 80

(e) SwissRanger 4000, Faro pose estimation, white con-
vex objects.
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(f) Kinect, Faro pose estimation, white convex objects.

Figure 9: Dependency of the measurement accuracy on the measurement angle between the camera and the object
surface.
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(a) SwissRanger 4000, Faro pose estimation, white con-
vex objects.
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(b) Kinect, Faro pose estimation, white convex objects.
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(c) SwissRanger 4000, Faro pose estimation, black con-
vex objects.
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(d) Kinect, Faro pose estimation, black convex objects.
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(e) SwissRanger 4000, Faro pose estimation, metallic
object.
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(f) Kinect, Faro pose estimation, metallic object.

Figure 10: Dependency of the measurement accuracy on different object surfaces (white, black and specular metallic).
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5.4. Experiment 4: Influence of Object Surface Properties on the Measurement Accuracy

In industrial applications, the surfaces of objects often are metallic or have dark colors. Such
surfaces are more difficult to measure with depth cameras than diffuse, light surfaces. To quantify
the effect of different surface properties on the accuracy of the 3D difference detection, we evalu-
ated the 3D difference detection accuracy for three objects with different surface properties. The
accuracy was evaluated for convex shapes with a white respectively black surface (Figure 5c) and
for a metallic, industrial object (Figure 5a). Figure 10 visualizes the results of this evaluation.
For the SwissRanger depth camera, up to a distance of one meter, the accuracy of the difference
detection is similar for the white and black shapes. However, for distances larger than one meter,
the accuracy decreases faster for the black surfaces. Even for close distances of the camera to
the object, the measurement accuracy of the SwissRanger depth camera is low for the metallic
object. This effect can be explained by the measurement principle of the time-of-flight depth
camera: The light emitted by the time-of-flight camera is reflected multiple times by the metallic
surface before it gets reflected to the depth camera. This increases the time it takes until the light
emitted by the camera is captured by the camera sensor. Due to this prolonged time-of-flight of
the emitted light, the depth camera overestimates the distance to the captured object.

In contrast to the time-of-flight depth camera, the accuracy of the structured light Kinect
depth camera gets less affected by the metallic surface of the industrial object. Although the
surface of this object is strongly specular, for close distances of the Kinect depth camera to the
surface, the distances to the object are measured with a high precision. Just as for the other
evaluation objects, the measurement accuracy of the Kinect depends much more on the distance
of the camera to the objects than on the surface properties of the captured objects. Figure 11
shows the difference visualization of metallic and black surfaces captured with a Kinect and a
SwissRanger depth camera (see also Figure 7 for comparison with the depth image acquired by
the Kinect). For such surfaces, the measurements acquired by the SwissRanger depth camera are
much noisier than those acquired by the Kinect.

(a) Kinect (b) SwissRanger 4000 (c) SwissRanger 4000 (d) SwissRanger 4000

Figure 11: Objects with metallic and black surfaces captured with a SwissRanger 4000 and a Kinect depth camera (same
objects as in Figure 5a and 7). The color encoding of the differences is the same as in Figure 7.

6. Discussion of the Evaluation Results and Future Work

In this paper, we have presented a 3D difference detection pipeline which enhances the ac-
curacy of depth image based 3D difference detection with two approaches: First, the precision
of the depth camera’s pose estimation is improved by coupling the depth camera with a high
precision industrial measurement arm. Second, the influence of the depth measurement noise
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is reduced by integrating a 3D surface reconstruction algorithm in the 3D difference detection
pipeline. The effect of both enhancements on the achievable accuracy of the 3D difference de-
tection was quantified in the ground-truth based quantitative evaluation, both for a time-of-flight
depth camera (SwissRanger 4000) and a structured light depth camera (a Kinect depth camera).
The evaluation was conducted with several evaluation objects and different surface properties.

The accuracy of the 3D difference detection which can be achieved with the SwissRanger
4000 time-of-flight depth camera depends strongly on the surface of the captured object. For
example, the accuracy strongly decreases if the captured object has a metallic surface. In contrast,
the measurements acquired by the Kinect depth camera are more independent of the surface
properties of the captured scene and even the metallic surfaces can be captured well with a
Kinect. Thus, the Kinect seems to be better suited for industrial scenarios with metallic objects.
At close distances of the Kinect depth camera to the captured surface, the combination of the
measurement arm based pose estimation and the 3D reconstruction algorithm reduces the overall
3D difference detection error to a few millimeters (about 1.73mm at a distance of 45-60cm and
4.68mm at a distance of 75-90cm). This is an important step towards the applicability of depth
camera based 3D difference detection in industrial scenarios.

A drawback of the current approach is that the 3D difference detection accuracy decreases
very strongly when the distance between the Kinect and the captured surface increases. From
a visualization of the measured distances and the ground truth distances, this effect seems to
be caused by systematic measurement errors. When the distance between the Kinect and the
measured surface increases, the Kinect seems to consistently overestimate the distance to the
measured surface for all captured depth values. For this reason, as a next step, we will conduct
a depth calibration of the Kinect depth camera (which corrects the measured depth values as a
function of the measured distance and should thus reduce the systematic measurement errors).
Then, we will evaluate how much the 3D difference detection can be further improved by such a
depth calibration.

Another important aspect for future work is a closer integration of the 3D difference detection
pipeline and the 3D surface reconstruction algorithm (KinectFusion). Currently, only the depth
image is exchanged between the 3D surface reconstruction and the other components of the
3D difference detection pipeline. The KinectFusion algorithm estimates the offset between the
camera pose of the first depth image and the current depth image by geometrically aligning the
depth images with the reconstructed 3D surface. This approach has the drawbacks described in
Section 3.2: The alignment diverges if the camera is moved close to the captured surface, if it is
moved too far away from the captured surface or if the surface of the captured object has only
few distinct geometric features. Therefore, we will evaluate whether the robustness and accuracy
can be further improved if the pose acquired by the mechanical measurement arm is used in the
KinectFusion algorithm instead of the geometric alignment step.
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