
Preprint. The final publication is available at www.springerlink.com. (DOI: 10.1007/s10055-011-0203-0)

Reducing the Gap Between Augmented Reality and 3D Modeling with
Real-Time Depth Imaging

Svenja Kahn

Abstract Whereas 3D surface models are often used for
augmented reality (e.g., for occlusion handling or model-
based camera tracking), the creation and the use of such
dense 3D models in augmented reality applications usually
are two separated processes. The 3D surface models are of-
ten created in offline preparation steps, which makes it dif-
ficult to detect changes and to adapt the 3D model to these
changes. This work presents a 3D change detection and model
adjustment framework that combines AR techniques with
real-time depth imaging to close the loop between dense 3D
modeling and augmented reality. The proposed method de-
tects the differences between a scene and a 3D model of the
scene in real time. Then, the detected geometric differences
are used to update the 3D model, thus bringing AR and 3D
modeling closer together. The accuracy of the geometric dif-
ference detection depends on the depth measurement accu-
racy as well as on the accuracy of the intrinsic and extrinsic
parameters. To evaluate the influence of these parameters,
several experiments were conducted with simulated ground
truth data. Furthermore, the evaluation shows the applicabil-
ity of AR and depth image-based 3D modeling for model-
based camera tracking.

Keywords 3D modeling· Augmented Reality· Computer
vision · Tracking· Depth imaging· Analysis-by-synthesis

1 Introduction

Augmented reality (AR) applications combine real and vir-
tual, are interactive in real time, and registered in 3D (Azuma
1997). Since Azuma first stated these characteristics of AR
applications in 1997, Augmented Reality has matured re-
markably (Zhou et al. 2008). However, an important bot-

S. Kahn
Fraunhofer IGD, Darmstadt, Germany
E-mail: svenja.kahn@igd.fraunhofer.de

tleneck remains: The availability of dense 3D surface mod-
els. Such dense 3D models are of uppermost importance for
two different augmented reality aspects. First, a 3D model
is needed for a smooth and seamless integration of virtual
objects into the camera images. Therefore, the virtual ob-
jects should be illuminated in a consistent way with the il-
lumination of the real scene, they should cast shadows, and
they should be occluded by parts of the real scene which are
closer than the virtual object. Both occlusion handling and
shadow calculation require knowledge about the 3D struc-
ture of the real scene (Haller 2004; Panagopoulos et al. 2009).
Furthermore, dense 3D models are often used for model-
based camera tracking, both for the camera pose initializa-
tion and for model-based frame-to-frame tracking (Lepetit
and Fua 2005). The model-based estimation of the camera
pose has the advantage that it overcomes the need to prepare
the scene with fiducial markers (Gall et al. 2006).

Recently, depth cameras have been developed which ac-
quire dense distance measurements in real time. Depth cam-
eras can be used to create realistic AR applications with
shadow mapping or occlusion culling even if no 3D model
of the real scene exists (Franke et al. 2011). However, these
approaches have several drawbacks. First, the user needs to
move a bulky dual-camera setup comprising both a depth
and a color camera (e.g., the Kinect has a width of 28 cm
and the state-of-the-art SR4000 depth camera weights 500 g,
without the additional color camera). A 3D model offers bet-
ter device independence: It can also be used by mobile de-
vices such as UMPCs, which offer powerful processors and
built-in 2D cameras and which are thus suited for model-
based AR, but which have no integrated depth measurement
devices. Another disadvantage of real-time depth imaging
without a 3D model is that the 2D camera and the depth
camera capture the scene from different viewpoints. Thus
due to occlusions, there is no complete mapping between
the color pixels and the depth measurements (Lindner et al.
2007). Further artifacts arise in fast camera movements if the

2 Svenja Kahn

color and the depth camera capture the images at slightly
different points in time. Finally, a 3D model can provide
more stable 2D-3D correspondences for model-based cam-
era tracking than depth measurements that are captured on
the fly. For example, depth measurement artifacts occur due
to motion blur effects if the depth camera is moved quickly.
In the 3D model creation process, these artifacts can easily
be circumvented by slow camera movements. Therefore, if
the user moves the camera quickly during the tracking, ac-
quiring the 3D measurements from the depth camera on the
fly would suffer from these artifacts, whereas the 3D model
provides 3D surface information which is not influenced by
this effect.

Currently, when it comes to dense 3D modeling, there is
a gap between the 3D modeling phase and the use of the 3D
models by AR applications (see Sect. 2). This work presents
an augmented reality 3D modeling framework which reduces
this gap by combining real-time depth imaging with AR
(Sect. 3). In a first step, geometric differences between the
real scene and the 3D model are detected in real time by
aligning dense depth measurements of a real scene with a 3D
model of this scene (Sect. 4). Then in a second step, the de-
tected geometric differences are used to adapt the 3D model
to the real scene, either manually or automatically (Sect. 5).
The accuracy of the geometric difference detection depends
on the depth measurement accuracy as well as on the ac-
curacy of the intrinsic and extrinsic parameters. To evaluate
the influence of these parameters, several experiments were
conducted with simulated ground truth data. The results of
these experiments are presented in Sect. 6. They quantify the
influence of the camera tracking accuracy and the measure-
ment noise on the AR difference detection method. Further
experiments show the applicability of 3D model adjustment
for model-based camera tracking.

2 State-of-the-art

The major challenge of using dense 3D models for AR is
that the 3D models need to be adapted whenever some part
of the scene changes (e.g., if new objects were added to the
tracked scene or objects were moved to another position).

2.1 3D modeling for Augmented Reality

Most augmented reality techniques that make use of dense
3D models implicitly assume that such a 3D model already
exists (Gall et al. 2006; Wuest 2008). Therefore, the recon-
struction process is often decoupled from the augmented re-
ality application and the reconstruction is done in an offline
preparation phase before the AR application can be used
(Wuest et al. 2007; Kahn et al. 2010a). This strict separa-
tion between the modeling process and the application of

the created 3D model for AR causes two major problems:
First, the occurrence of a change is often not obvious in the
first place. When a 3D model is used for model-based cam-
era tracking, objects that are part of the modeled scene are
often displaced partially in the real scene. This can cause
drift and instabilities in the camera tracking. However, itis
not always obvious that the tracking inaccuracies are due to
the fact that the real scene was changed. Furthermore, even
when the user is aware that the 3D model does not fit the re-
ality any more, it is often a difficult task to find out how the
3D model needs to be adapted such that it correctly models
the real scene again.

Recently, several methods have been proposed that use
augmented reality for 3D reconstruction with a 2D camera.
Pan et al. (2009) reconstruct a textured 3D model of an ob-
ject by rotating the object in front of the camera. Whereas
this approach provides good results for textured objects which
fulfill the condition that they can be rotated in front of the
camera, this method requires a static camera position and
thus cannot be used for the reconstruction of larger scenes.
The system presented by Van den Hengel et al. (2009) re-
lies on user input for the reconstruction of textured objects.
It estimates the camera pose for each image of a previously
recorded video sequence. To reconstruct a captured object,
the user manually specifies the 2D vertices of flat polygons
that form the contour of the object in the 2D image. Then
the 3D positions of these vertices are reconstructed with si-
multaneous localization and mapping. Whereas this method
is well suited for the reconstruction of objects that are com-
posed from planar surfaces, it would be difficult to model
scenes with arbitrary, non-planar surfaces. Bastian et al.(2010)
presented a method that reconstructs the surface of an ob-
ject with silhouette-based voxel carving. This approach is
based on the precondition that the boundary of the object
can be identified in the 2D image and that the camera can
be moved around the object. Scenes that do not fulfill this
condition cannot be reconstructed with this approach. For
example, it is not possible to reconstruct the walls of a room
because the projection of the wall onto the 2D camera image
always covers the whole image and no object boundary gets
projected onto the 2D image.

Structure from motion reconstruction algorithms com-
bine 3D reconstruction with camera tracking methods (Bleser
et al. 2007; Bleser 2009; Klein and Murray 2009). Sparse
features are reconstructed online while the pose of the cam-
era is tracked with camera pose estimation algorithms. These
online reconstruction algorithms for sparse features provide
a smooth integration of 3D modeling and AR applications.
This is currently often not the case for dense 3D models,
which (except by the method presented by Newcombe and
Davison (2010)) usually need to be modeled offline. This
is partly due to the fact that in contrast to sparse 3D fea-
tures dense surfaces can not easily be reconstructed from

Reducing the Gap Between Augmented Reality and 3D Modeling with Real-Time Depth Imaging 3

2D camera images in real time, especially not if the object
surfaces are not well textured. However, currently real-time
depth imaging cameras have been developed which can help
to bridge this gap.

2.2 Real-time depth imaging

Time-of-flight cameras acquire dense 3D measurements in
real time (Oggier et al. 2006; Kolb et al. 2009). They emit
near-infrared modulated light that gets reflected by the scene
and captured by the image sensor of the camera. For every
pixel, the distance to the scene is calculated by the phase
shift of the reflected light. The distances can be transformed
to Cartesian coordinates, yielding a 3D measurement per
pixel. Time-of-flight cameras capture 3D measurements as
well as an intensity image that depicts the amount of light
reflected onto each pixel.

Furthermore, recently the first low-cost depth camera for
the mass market was released by PrimeSense respectively by
Microsoft. This depth camera is part of the Kinect device.
Initially targeted at the gaming market, the Kinect depth
camera can be used to realize AR applications with real-
time depth imaging as well. It has a higher resolution than
state-of-the-art time-of-flight cameras (SwissRanger 3000:
176×144 pixel, Kinect: 640×480 pixel). The Kinect con-
tains two cameras (a color camera and the depth camera) as
well as an infrared projector that projects an infrared pattern
onto the scene. This infrared pattern is detected by the depth
camera (which is in fact an infrared camera) and used to
calculate the distance of the scene. The measured depth and
color images of the Kinect can be accessed with the OpenNI
interface (OpenNI 2011).

Huhle et al. (2008) as well as Engelhard et al. (2011) pre-
sented methods that use a depth and a color camera for 3D
reconstruction. Both assemble colored 3D point clouds by
first aligning the 3D point clouds based on 2D features in the
color images. Then, the alignment is refined with 3D-3D ge-
ometric registration. Both approaches can be used to recon-
struct 3D scenes from scratch. However, they do not cover
the issue how information about an existing 3D model (e.g.,
a triangle mesh that already models a part of the scene) can
be incorporated into the reconstruction process. The incor-
poration of an existing triangle mesh in the reconstruction
process requires a method that can detect where the existing
mesh differs from the real geometry (geometric difference
detection) and where it thus needs to be updated.

2.3 Geometric difference detection

Kahn et al. (2010b) proposed the first 3D difference detec-
tion approach for a moving camera. This approach allows

to move a camera freely in a scene and to automatically de-
tect 3D differences in real time with a dense 3D discrep-
ancy check. This paper extends the ideas that were first pre-
sented in (Kahn et al. 2010b). Previous solutions for discrep-
ancy check were based on still 2D images: In their pioneer-
ing work, Georgel et al. (2007, 2009a,b) presented an aug-
mented reality solution for discrepancy check in the context
of construction planning. Their system allows engineers to
superimpose still 2D images of a plant with the CAD model
developed during the planning phase. Whereas this augmen-
tation of still 2D images with the 3D model is very useful to
visually compare the 3D model and the real scene, it is lim-
ited to the 2D information contained in the images and pro-
vides no possibility to automatically compare the 3D data
of the model with the 3D geometry of the real scene. Webel
et al. (2007) presented a system for AR discrepancy check
with which the 3D positions of single points in the 3D model
and the real scene can be compared: A laser pointer is used
to depict a point on the surface of the real scene. The 3D co-
ordinate of the point is reconstructed by triangulation with
a stereo camera system. Whereas this approach allows the
comparison of single 3D points, it is not suited for dense 3D
difference detection.

Bosch́e et al. (2006) transformed the 3D data of a CAD
model and 3D data measured with a time-of-flight camera
into a common voxel occupancy grid. However, they used a
static camera position and thus did not need to solve the reg-
istration problem. In recent publications, Bosché addressed
the registration problem in the context of object recognition
(Bosch́e 2008, 2010). He used manually specified 3D corre-
spondences between a laser scan of a construction site and a
3D model of the construction site to transform both data sets
into a common coordinate system. As the manual selection
of 3D correspondences is an offline step (and for the task of
discrepancy check, 3D-3D correspondences cannot easily be
extracted automatically as the 3D model might differ from
the real scene), this approach is not feasible for difference
detection with an arbitrary moving camera.

3 Concept overview

Most frameworks for model-based augmented reality use a
sequential one-way process for the 3D modeling task (see
Fig. 1(a)). First a 3D model is created in a preparation step.
Then, this 3D model is used for the realization of augmented
reality applications. These conventional approaches do not
offer the possibility to use AR for the 3D modeling step it-
self.

This limitation is overcome by the proposed framework
(Fig. 1(b)). Similar to the work presented by Van den Hen-
gel et al. (2009) and Bastian et al. (2010), it closes the loop
between 3D reconstruction and augmented reality by em-
ploying AR for the 3D modeling process. In contrast to pre-

4 Svenja Kahn

(a) Conventional framework (b) Proposed framework

Fig. 1 (a) Conventional framework: The 3D model is used as input for theAR application, but not vice versa. (b)Proposed framework: AR is
used to detect geometric differences between the 3D model and the real scene. Then the measured geometric differences are fed back into the 3D
modeling pipeline and are used to update the 3D model.

vious approaches, it furthermore combines AR with real-
time depth imaging to detect geometric differences between
the real scene and a 3D model of the scene. Thus, the 3D
modeling is supported by the AR components of the frame-
work. Vice versa, the reconstructed 3D model can be used
for model-based AR applications. With the proposed frame-
work, the user can reconstruct or adjust a 3D model of the
scene with a depth-color camera setup. After the AR-based
model adjustment step, AR applications that need 3D infor-
mation about the scene can be realized with a single color
camera, as the 3D information can be accessed from the 3D
model.

The basic idea for 3D difference detection was first de-
scribed in Kahn et al. (2010b). In this paper, it is extended
for 3D modeling by AR. For the difference detection, the
pose of a depth camera is estimated by calculating the pose
of a rigidly coupled 2D camera with camera tracking algo-
rithms. The tracked camera pose is then used to register the
real depth measurements and the 3D model in a common co-
ordinate system. By rendering the 3D model from the point
of view of the depth camera, a simulated depth image can
be generated which is compared to the real depth measure-
ments to detect geometric differences (see Sect. 4).

In a next step, the measured geometric differences are
fed back into the 3D modeling pipeline where they are used
to update the 3D model either manually or semi-automatically
(see Sect. 5). This update step benefits from the fact that
the previous augmented reality difference detection registers
the measured depth values and the 3D model in a common
coordinate system. This eases the model adjustment task,

both for the user and for (semi-)automatic model adjust-
ment. Continuously updating the 3D model would require
very complex algorithms for real-time 3D model process-
ing. Furthermore, these algorithms would have to assure that
pose estimation errors or measurement inaccuracies do not
distort previously modeled parts. The approach presented in
this paper is tailored to semi-automatic model adjustment:
Rather than updating the 3D model fully automatically with
each single depth measurements, the user takes a few snap-
shots of a 3D scene. Then the 3D model is automatically
updated according to the depth measurements of these snap-
shots. The AR visualization of the geometric differences
supports the user in identifying the viewpoints for new depth
images and in judging the accuracy of the current camera
pose estimation (which influences the accuracy of the 3D
modeling, see Sect. 6).

4 Geometric difference detection

To detect geometric differences between a real scene and a
3D model of the scene, a color camera (used for the cam-
era tracking) is rigidly coupled with a depth camera (for the
3D imaging). This section describes why both a 2D and a
depth image are needed, how to calibrate the cameras, and
how to use camera tracking in combination with analysis-
by-synthesis to geometrically compare the real scene and
the 3D model.

Reducing the Gap Between Augmented Reality and 3D Modeling with Real-Time Depth Imaging 5

4.1 Combining 2D imaging with real-time depth imaging

By combining camera tracking based on 2D images with
real-time depth imaging, dense 3D measurements can be
acquired and registered with the coordinate system of the
tracked scene in real time. This would not be possible if ei-
ther one of these images (the 2D image or the depth image)
was used alone: Whereas the color images of custom 2D
cameras can be used to track the camera position, 2D cam-
eras cannot capture dense depth images in real time (e.g., at
untextured parts of a scene). Vice versa, depth cameras ac-
quire dense depth images in real time but their pose cannot
be tracked robustly with 2D image-based camera tracking
algorithms. An alternative possibility to register the mea-
sured depth images with the 3D model would be to use ge-
ometric alignment, i.e., iteratively approach the 3D points
with the Iterative Closest Point algorithm (Besl and McKay
1992). However, this approach would be computationally
expensive. Furthermore, differences between the real scene
and the 3D model would result in wrong registrations, which
should be avoided for geometric difference detection tasks
because here the 3D model can differ from the real scene.

For these reasons, two cameras are used: a custom 2D
color camera and a depth camera. This combination of 2D
imaging with 3D imaging is not restricted to specific de-
vices. Whereas in Kahn et al. (2010b) a time-of-flight depth
camera and a color camera were rigidly coupled on a cam-
era rig, the Kinect camera of Microsoft (which contains both
a depth and a color camera) can be used as well. Both sys-
tems have in common that the depth and the color camera
are rigidly coupled and placed at different positions. Thus,
the intrinsic parameters of both cameras as well as the rel-
ative transformation(∆R,∆ t) between the cameras need to
be calculated. In contrast to the Kinect depth camera, the
time-of-flight camera captures not only the depth image but
also an intensity image that depicts the amount of light re-
projected at each pixel. This intensity image can also be used
to track the pose of the time-of-flight camera without a color
camera. However, it has a much lower resolution than cus-
tom color cameras (typically 176×144 pixels) (Oggier et al.
2006).

4.2 Camera calibration

For a setup that combines a time-of-flight camera with a
color camera, the MultiCameraCalibration tool (Schiller et al.
2008) calculates the relative transformation between the time-
of-flight camera and the color camera as well as the intrinsic
parameters of both cameras.

The main challenge for the calibration of a Kinect depth
camera is that the 2D checkerboard patterns that are oth-
erwise used for the calibration are not visible in the depth
images. Therefore, the calibration of Kinect depth cameras

requires a trick which is based on the insight that the depth
camera is in fact an infrared camera (see Section 2.2). In-
stead of the depth image, the raw infrared image is acquired
from the OpenNI interface. The infrared projector is covered
with opaque tape to remove the infrared pattern from the im-
age, and the chessboard pattern is illuminated with an exter-
nal infrared lamp. This way the chessboard becomes visible
in the infrared images of the depth camera. Then the Kinec-
tAutoCalibration can be used to calculate the intrinsic pa-
rameters as well as the relative transformation between the
color and the depth camera of the Kinect (Engelhard 2010).

4.3 Camera tracking

After the 3D model was reconstructed or adjusted to the
real scene, it can be used for model-based camera track-
ing. However, in the 3D model reconstruction phase, model-
based camera tracking can be unstable: During the adjust-
ment process, the 3D model does not yet correspond to the
real geometry. This can result in errors or inaccuracies of
the estimated camera pose. This is why marker tracking and
structure from motion are used for the camera pose estima-
tion in the 3D model adjustment phase. The camera pose
is initialized with a marker whose coordinates are specified
in the coordinate system of the given 3D model. Thus, the
world coordinate system is identical to the model coordi-
nate system. Marker-based camera tracking has the draw-
back that the camera pose can only be calculated if markers
are visible in the current camera image. Therefore, we com-
bine markerless camera tracking with structure from motion
3D reconstruction (Bleser et al. 2007). While the camera is
moved, this approach detects characteristic image features
with a Shi-Tomasi corner detector (Shi and Tomasi 1994)
and tracks these 2D image features with a Lucas Kanade
tracker (Wuest 2008). Then, the 3D positions of the tracked
features are reconstructed online via triangulation (Bleser
et al. 2007). Finally, the 2D-3D correspondences between
the 2D image coordinates of the tracked features and their
reconstructed 3D coordinates are used to calculate the cam-
era pose if no marker is visible.

The pose(RD, tD) of the depth camera is calculated from
the tracked pose of the color camera(RC, tC) with Eq. (1).
Here(∆R,∆ t) is the relative transformation between the two
cameras, which was calculated in the offline calibration step.

RD = RC ·∆R

tD = RC · tC +∆ t
(1)

4.4 Difference calculation via analysis-by-synthesis

To compare the 3D data acquired by the depth camera and
the 3D model, the discrepancy between the 3D measurement

6 Svenja Kahn

and the corresponding 3D position in the 3D model is calcu-
lated for each pixel via analysis-by-synthesis: First, the3D
model is rendered from the current camera pose with the in-
trinsic and extrinsic parameters of the depth camera. Then,a
synthetic 3D image is calculated from the depth buffer of the
graphics card. IfP is the 4x4 projection matrix used for the
rendering of the 3D model, each depth value is converted
to the camera coordinate system withP−1. After this con-
version, the geometric differences between the 3D model
and the real measurements are calculated pixelwise by com-
paring the depth value of the synthetic depth image and the
depth measurement of the depth camera at the same pixel.

5 Model adjustment

The difference detection approach described in this paper
contributes to geometric modeling in two different ways: On
the one hand, differences are visualized to ease the model
adaption task for the user. Furthermore, the 3D model can
be adapted algorithmically such that its surface better corre-
sponds to the measured scene.

5.1 Geometric difference visualization

To visualize the discrepancies, the camera image is aug-
mented with a semi-transparent RGBA image whose colors
represent the 3D differences. Red pixels show that the real
scene is closer than its counterpart in the 3D model, at yel-
low pixels the real scene is farther away, and blue pixels
show parts of the scene that do not exist in the 3D model. If
the depth camera could not acquire a depth value at a certain
pixel, this pixel is colored in green.

To visualize the degree of the discrepancies, the trans-
parencyα of each pixel in the difference visualization im-
age is set such that pixels visualizing close distances havea
higher transparency than pixels at positions where there isa
large discrepancy between the 3D model and the real mea-
surements:α = (dmeasured −d3Dmodel) ·o. Here,dmeasured and
d3Dmodel are the depth values. The opacity factoro can be set
by the user to change the transparency of the whole discrep-
ancy visualization image.

The image of the color camera provides more details
about the scene than the grayscale-encoded depth image.
However, if the color image is augmented, the differences
are not well visible anymore because the colors of the 2D
camera interfere with the colors of the difference visualiza-
tion. Therefore, the color image is converted to a grayscale
image. This way it is possible to visualize the (grayscale)
details of the scene and the detected differences at the same
time. The depth measurements of the depth camera need to
be mapped onto the color image. Thus, the raw depth values
are first transformed to 3D points and then projected onto the

2D image of the color camera. Equation (2) transforms the
1D depth valuedcam of a pixel(px, py) in the 2D image co-
ordinate system of the depth camera to a 3D pointpCCS(D) in
the depth camera coordinate system CCS(D). The horizontal
respectively vertical focal length is denoted by(fx, fy) and
the principal point by(cx,cy). In a next step, the 3D points
are transformed to the world coordinate system with Eq. (3).

pCCS(D) =







(px − cx)∗
1
fx
∗dcam

(py − cy)∗
1
fy
∗dcam

dcam






(2)

pWCS = (RD)
−1

· (pCCS(D)− tD) (3)

Finally, Eq. (4) is used to project 3D points from the
world coordinate system to 2D coordinatespICS(C) in the
camera image of the color camera. Here,KC is the camera
calibration matrix of the color camera which contains the
intrinsic parameters.

pICS(C) = KC((RC · pWCS)+ tC) (4)

(a) Depth image augmented
with differences

(b) Grayscale image augmented
with differences

Fig. 2 Difference visualization (Kinect): in comparison to the 3D
model, the box in the real scene was moved to the left.

Figure 2 shows the difference visualization of a box which
that moved to the side. This displacement would cause prob-
lems for model-based camera tracking approaches because
the box is well textured and thus many features are detected
on the real box. If the 3D model does not match the posi-
tion of the real object, wrong 3D positions would be inferred
from the 3D model. With the approach proposed in this pa-
per, the user can use the difference detection and visualiza-
tion either to move the box back to the modeled position or
to model the new box position in the 3D model (Fig. 3).

Reducing the Gap Between Augmented Reality and 3D Modeling with Real-Time Depth Imaging 7

(a) Depth and color image (b) Colored 3D triangle mesh with virtual car

Fig. 3 (a) Depth and color image acquired by the Kinect. The black pixels in the depth image show pixels where the Kinect could not acquire
depth values. (b) Colored 3D mesh created by mapping the colors tothe depth image and by converting the depth values to the worldcoordinate
system. The square markers on the brick model are used to initialize and to track the camera pose. The positions of the depth and the color camera
are represented by the blue and orange camera symbols.

Fig. 4 Geometric model adjustment (Kinect): First only the 3D model of thebricks is known (parts of the scene which are not modeled are colored
in blue). By adding submeshes for missing parts, the 3D model is gradually amended. Right: Adapted 3D model after three submeshes were added.

5.2 Geometric model adjustment

This section describes how the 3D model is geometrically
adjusted. This is accomplished by inserting triangle meshes
in the 3D model which cover the parts of the surface where
the real scene was measured closer to the camera than the
surface of the 3D model or where no 3D information was
available beforehand (see Fig. 4). The described approach
does not imply restrictions on the 3D model but is feasi-
ble for any kind of 3D model which can be rendered (e.g.,
polygonal meshes, implicit surfaces, or CAD models). The
only precondition is that it is possible to store an additional
triangle mesh in the used data format.

To adapt the 3D model, a triangle submesh is created
which contains all the triangles of the depth measurements
whose 3D measurements belong to pixels where a change is
visualized. Thus when the user wants to adapt the 3D model
to the depth measurements of the current viewpoint, he can
change the thresholdo (see Sect. 5.1) to increase or decrease
the subparts of the measured depth image which are added to
the scene. This triangle mesh is then added to the 3D model
on the fly: The new triangle mesh is added as a new geome-
try node to the scenegraph system OpenSG (OpenSG 2011)
which is used for the rendering of the 3D model.

To add 3D measurements of the depth camera to the ge-
ometry of the 3D model, the depth measurements need to be

transformed to the coordinate system of the 3D model. As
noted in Sect. 4.3, this corresponds to the world coordinate
system. Therefore, the depth measurements are transformed
to 3D points in the model coordinate system with Eqs. 2 and
3.

If the 3D model is a polygonal vertex mesh, the differ-
ence detection approach described in this paper can as well
be used to remove parts of the 3D model where the time-of-
flight camera measures distances that are farther away than
the surface of the 3D model. In contrast to the previously
described surface insertion technique, this modifies the ver-
tices and the triangle structure of the 3D model. To remove
the correct vertices of the 3D model, all verticesvi ∈V (and
the polygons adjacent to these vertices) need to be removed
which fulfill the following two conditions:

1. vi gets projected on one of the pixels where a difference
was detected by the analysis-by-synthesis approach.

2. vi is not hidden by another surface of the 3D model. This
condition prevents the removal of hidden surfaces, for
example the back side of the 3D model.

The vertices and triangles that fulfill these conditions are
identified with a shader. The 3D model is rendered offscreen
with a pixel buffer. To detect the visible vertices and trian-
gles, each triangle is drawn with a different color. Then, the

8 Svenja Kahn

rendered color is a mapping to the triangle which is visible
at this pixel.

6 Quantitative evaluation

The accuracy of the 3D difference detection depends on the
accuracy of the relative transformation between the two cam-
eras, the accuracy of the camera pose estimation of the 2D
camera, and the accuracy of the intrinsic calibrations of the
2D camera and the depth camera. When one of these pa-
rameters is inaccurately estimated, there is an offset between
the camera pose used for the analysis-by-synthesis approach
and the real camera pose. To quantify the influence of these
parameters, we evaluated the difference detection and the
3D modeling with a simulation providing ground truth data
for both the camera pose and the 3D geometry of the scene.

6.1 Extrinsic and intrinsic parameters

In the first setup, we used a 3D model of the toy brick scene
to create simulated depth and color images while varying
the parameters of the virtual cameras. For the evaluation,
the difference detection was applied on a depth image which
was simulated with the correct parameters (reference image)
in combination with a depth image which was generated
with the modified extrinsic or intrinsic parameters (evalu-
ation image).

Figure 5 visualizes the results of this evaluation. The top
row shows the differences between the reference and the
evaluation image which occur due to the errors in the ex-
trinsic and intrinsic camera parameters. The plots beneath
show how the residual increases subject to the intrinsic and
extrinsic inaccuracies. Here, the residual is the average of
the pixelwise difference of both depth images. Each param-
eter was evaluated independently. Please note that for the
evaluation of the rotation offsets, the camera was rotated lo-
cally such that its position remained constant. If the extrinsic
of the camera is denoted with(R, t), changing the rotation
R while keeping the translation parameter t constant would
also result in a changed camera position because the rota-
tion R is applied beforet. The distance of the camera to the
scene was about one meter, and the width of the brick model
is 22 cm. The x-axis of the depth camera points to the right,
the y-axis to the top and the z-axis points toward the brick
model.

The evaluation shows that for this scene translational
errors have rather moderate effects on the accuracy of the
difference detection. This is mainly due to the fact that the
scene contains flat walls. Therefore, the changes in the depth
measurements are not very large when the camera is moved.
However, the calculation accuracy depends strongly on an
accurate estimation of the camera rotation. Small errors in

the camera rotation cause large discrepancies between the
reference and the evaluation depth image. In view of the in-
trinsic parameters, an inaccurate estimation of the principal
point causes much larger errors than inaccuracies of the fo-
cal length.

6.2 Depth measurement noise

The depth measurements of depth cameras are affected by
random noise as well as by systematic errors (e.g., due to
reflections of specular surfaces). The systematic errors are
different for each depth measuring technology and cannot
be simulated easily. However, we evaluated the effects of
measurement noise: Therefore, Gaussian noise was added
to the depth values. In accordance with the specification of
SwissRanger depth cameras, the standard deviation of this
random noise was set to 1% of the distance to the camera
(MesaImaging 2011). The right column visualizes the re-
sults of tests that were conducted with noisy depth images.
If the pose of the depth camera is very accurately estimated,
the accuracy of the calculation results is primarily influenced
by the random measurement noise. However, when the pose
error increases (especially the rotational error), the differ-
ence detection accuracy is primarily reduced by the errors
that are caused by the camera pose estimation.

6.3 Inaccuracies of the 3D model

3D models often only approximate real objects. For exam-
ple, polygonal meshes approximate curved objects with pla-
nar triangle surfaces. We used a standard VRML sphere with
a radius of one meter to evaluate this effect. Figure 6 vi-
sualizes the polygonal sphere mesh as well as the differ-
ences that are detected when depth images of the sphere are
taken from a distance of three meters to the sphere with ro-
tational and translational offsets. Furthermore, Fig. 7 shows
the residual plots of experiments in which the camera was
positioned exactly at the center of the sphere. If the sphere
model would be smoothly curved, the rotational offset would
always be 0. However, the polygonal approximation of the
sphere causes differences between the depth images. Adding
noise to the depth images reveals a particular interesting ef-
fect: The residual is larger than with either the noise or the
approximation-based differences alone, but not as much as
the sum of both effects. In this case, the noise in the depth
values smoothes the polygonal approximation of curved sur-
faces, thus reducing the error caused by the triangle approx-
imation.

Reducing the Gap Between Augmented Reality and 3D Modeling with Real-Time Depth Imaging 9

(a) From left to right: Inaccurate translation (0.02m), rotation (2.3deg), principal point (10 pixel), focal length (50 pixel).

(b) Residual caused by camera translation (without noise) (c) Residual caused by camera translation (with noise)

(d) Residual caused by camera rotation (without noise) (e) Residual caused by camera translation (with noise)

(f) Residual caused by incorrect intrinsic parameters (without
noise)

(g) Residual caused by incorrect intrinsic parameters (with noise)

Fig. 5 Influence of inaccurately estimated camera pose on the difference detection. ((b)-(e)): Inaccurate extrinsic parameters. (f)-(g)): Inaccurate
intrinsic parameters. The residual is the average distance between the depth image and the 3D model.

10 Svenja Kahn

(a) Rotation: Without Noise (b) Rotation: With Noise

(c) Translation: Without Noise (d) Translation: With Noise

Fig. 7 Influence of approximated 3D meshes on difference detection.

Fig. 6 From left to right: (a) Polygonal mesh of a 3D sphere (b) Dif-
ference visualization of rotational offset (c) Difference visualization of
translational offset (sidewards) (c) Difference visualizationof transla-
tional offset (distance)

6.4 Execution time

The execution time was measured with an Intel Core i7 pro-
cessor with 3.07 Ghz and an NVidia GeForce GTX 470. The
CPU-based part of the framework is implemented as a single
core C++ implementation.

The geometric difference detection compares the real
measurements with the 3D model (see Sects. 4.4 and 5.1). It
is implemented as a GPU fragment shader. Table 1 shows the
execution time of the geometric difference detection. If the
3D model consists of relatively few triangles, the execution
time mainly results from the time it takes to copy the data to

the graphics card and back to the CPU. This time is constant
for a given image size. Even for large 3D models with more
than 2 million triangles, the geometric difference detection
is very fast. Thus, it can be used in real time in combina-
tion with online camera pose estimation. Please note that
the time for the camera pose estimation (marker tracking or
structure from motion) is not included in Table 1, as it de-
pends on the structure and appearance of the tracked scene.
The real-time structure from motion algorithm used in our
framework was evaluated by Bleser et al. (2007).

Number of triangles
Image size

176×144 240×320 480×640

1.280 1ms 3ms 9ms
15.000 1ms 3ms 9ms
111.000 2ms 4ms 9ms
670.000 3ms 6ms 12ms

1.000.000 3ms 6ms 13ms
2.500.000 6ms 8ms 14ms

Table 1 Geometric difference detection: execution time (milliseconds)

Reducing the Gap Between Augmented Reality and 3D Modeling with Real-Time Depth Imaging 11

The 3D model adjustment substep that adds triangles to
the 3D model is implemented on the GPU. The processing
time required to add a new triangle submesh depends only
on the size of the new submesh (and thus the number of
measurements in the depth image), not on the previous size
of the 3D model. It is 9 ms for a depth image with 176×144
depth measurements, 22 ms for 320× 240 depth measure-
ments, and 80 ms for 640×480 depth measurements. Usu-
ally not the whole depth image, but only subparts of it need
to be added to the 3D model. In this case, the processing
time is reduced accordingly. The identification of the trian-
gles that need to be removed from the 3D model is imple-
mented as a fragment shader. The processing time of this
shader corresponds approximately to the execution time of
the difference detection shader, which is given in Table 1.

6.5 Model-based camera tracking

To evaluate the applicability of the presented approach for
model-based camera tracking, a virtual 3D scene (for which
ground truth data was known) was reconstructed with the
presented approach. Then, the tracking accuracy of model-
based camera tracking was evaluated for the reconstructed
3D model. The virtual 3D scene used for this evaluation cor-
responds to the real scene shown in Figs. 2, 3 and 4 and
is visualized in Fig. 8. For this evaluation scenario, we as-
sumed that initially a 3D model of the lego bricks and the
sideboard was given. However, the box and the small car
were not modeled yet. Thus, the user would take four snap-
shots of the box and the car, from which the surfaces of
both objects were reconstructed (Gaussian noise was added
to the simulated depth images). This 3D reconstruction step
added 56.502 new triangles to the 3D model, which previ-
ously consisted of 201.670 triangles.

In a next step, the reconstructed 3D model was used for
model-based camera tracking. The model-based pose esti-
mation tracks KLT features in the 2D image and acquires
the 3D coordinates of these features from the 3D model, see
Bleser et al. (2005). The virtual camera was moved 360◦

around the object, which is a challenging camera path as
it requires to continuously acquire new 2D-3D correspon-
dences for the tracking. Figure 9(a) plots the Euclidean cam-
era pose inaccuracy for the reconstructed 3D model and for a
perfect 3D model of the scene. For the perfect 3D model, the
average Euclidean distance of the calculated pose to the real
camera pose was 3.3 cm, for the reconstructed 3D model
4.8 cm. To further evaluate the contribution of 3D model
adjustment for model-based camera tracking, the box was
moved 2 cm to the right. Figure 9(b) plots the camera pose
error without and with a further 3D model adjustment step.
Whereas an accuracy of 4.9 cm can be achieved with the 3D
model which gets adjusted according to the replacement of

the box, the average camera pose error without this adjust-
ment is 16.5 cm. Figure 8 visualizes the estimated camera
paths with and without the adjustment step.

Fig. 8 Ground truth camera path (green) and tracked camera paths.
Red: Without 3D model adjustment according to the changed box po-
sition. Blue: tracked camera pose after the 3D model adjustment step.
Parts of the scene that were given as input to the reconstruction are
colored, reconstructed parts are shown in gray.

7 Conclusion and future work

The framework presented in this paper reduces the gap be-
tween augmented reality and 3D modeling by supporting the
3D modeling task with augmented reality-based difference
detection. The combination of real-time depth imaging with
camera tracking is the basis for geometric difference detec-
tion between a real scene and a 3D model of this scene. In a
model adjustment step, the detected differences can be used
to adjust the 3D model such that it corresponds to the real
scene. This is achieved by adding new submeshes to the 3D
model or by removing triangles if geometric differences are
detected.

In future work, the 3D model adjustment could be en-
hanced in several ways: Currently, the added triangle meshes
have a uniform resolution. Thus, the number of triangles
in the 3D model increases quite fast when new submeshes
are added. The number of triangles can be significantly re-
duced by mesh decimation algorithms such as quadric edge
collapse decimation (Garland and Heckbert 1997). Further-
more, the detection of geometric elements such as planar
surfaces in the depth images could help to yield both smaller
(in number of triangles) and more accurate surface struc-
tures. If a plane is detected, the 3D measurements can be
adjusted such that they lie exactly on the plane and the ge-
ometry can be modeled by very few triangles.

The model adjustment could further be improved by edge
stitching: In the current version, the triangle meshes are just
added to the geometry the same way as they were measured.
This causes saw-toothed edges that are not smoothly merged
with the other triangles. This could be enhanced by adding
additional triangles between the vertices at the border of the

12 Svenja Kahn

(a) Tracked camera pose: perfect and reconstructed 3D model(b) Tracked camera pose: with and without 3D model adjustment

Fig. 9 Accuracy of camera pose estimation (model-based camera tracking).

new mesh and the closest vertices of the previously recon-
structed triangle mesh. In view of the model adjustment it-
self, adjusting the position of triangles could be an alterna-
tive to the appending and removal of triangles. This would
require to find a solution for the question: Under which con-
ditions can we assume that an existing object has moved?
And in which cases do we rather assume that a new object
was added to or removed from the scene?

In the current implementation, the camera pose estima-
tion process is separated from the geometric modeling. The
registration between the depth image and the 3D model could
be enhanced with an additional geometric alignment step
such as the Iterative Closest Point algorithm (Besl and McKay
1992). Furthermore, a combined numerical optimization, which
optimizes the poses as well as the 3D measurements, could
help to find an optimum for the pose estimation and the ge-
ometric registration.

Acknowledgements This work was partially funded by the German
BMBF project AVILUSplus (01IM08002).

References

Azuma RT (1997) A survey of augmented reality. Presence Teleopera-
tors Virtual Environ 6:355–385

Bastian J, Ward B, Hill R, van den Hengel A, Dick A (2010) Interactive
modelling for ar applications. In: 9th IEEE International Sympo-
sium on Mixed and Augmented Reality (ISMAR), pp 199–205

Besl P, McKay N (1992) A method for registration of 3-D shapes. In:
IEEE Trans Pattern Anal Match Intell, vol 14(2), pp 239–256

Bleser G (2009) Towards visual-inertial slam for mobile augmented
reality. PhD thesis, TU Kaiserslautern

Bleser G, Pastamorv Y, Stricker D (2005) Real-time 3d camera track-
ing for industrial augmented reality applications. In: WSCG, pp
47–54

Bleser G, Becker M, Stricker D (2007) Real-time vision-based tracking
and reconstruction. J Real Time Image Proc 2:161–175

Bosch́e F (2008) Automated recognition of 3d cad model objects in
dense laser range point clouds. PhD thesis, University of Waterloo

Bosch́e F (2010) Automated recognition of 3D cad model objects in
laser scans and calculation of as-built dimensions for dimensional
compliance control in construction. Elsevier J Adv Eng Inform
24(1):107–118

Bosch́e F, Teizer J, Haas CT, Caldas CH (2006) Integrating data from
3d cad and 3d cameras for real-time modeling. In: Proceedings of
joint international conference on computing and decision making
in civil and building engineering, pp 37–46

Engelhard N (2010) KinectAutoCalibration.
https://github.com/NikolasE/KinectAutoCalibration

Engelhard N, Endres F, Hess J, Sturm J, Burgard W (2011) Real-time
3d visual slam with a hand-held rgb-d camera. In: Proceedings of
the RGB-D workshop on 3D perception in robotics at the Euro-
pean robotics forum, Vasteras, Sweden

Franke T, Kahn S, Olbrich M, Jung Y (2011) Enhancing realism of
mixed reality applications through real-time depth-imaging de-
vices in x3d. In: Proceedings of the 16th international conference
on 3D web technology, ACM, New York, NY, USA, Web3D ’11,
pp 71–79

Gall J, Rosenhahn B, Seidel HP (2006) Robust pose estimation with 3D
textured models. In: Pacific-Rim symposium on image and video
technology (PSIVT), pp 84–95

Garland M, Heckbert PS (1997) Surface simplification using quadric
error metrics. In: Siggraph 1997, pp 209–216

Georgel P, Schroeder P, Benhimane S, Hinterstoisser S, Appel M,
Navab N (2007) An industrial augmented reality solution for dis-
crepancy check. In: ISMAR 2007: proceedings of the 6th IEEE
and ACM international symposium on mixed and augmented real-
ity, pp 1–4

Georgel P, Benhimane S, Sotke J, Navab N (2009a) Photo-based indus-
trial augmented reality application using a single keyframe regis-
tration procedure. In: ISMAR 2009: Proceedings of the 8th IEEE
and ACM international symposium on mixed and augmented real-
ity, pp 187–188

Georgel P, Schroeder P, Navab N (2009b) Navigation tools forviewing
augmented cad models. IEEE Comput Graph Appl 29(6):65–73

Haller M (2004) Photorealism or/and non-photorealism in augmented
reality. In: Proceedings of the 2004 ACM SIGGRAPH interna-
tional conference on virtual reality continuum and its applications
in industry, VRCAI ’04, pp 189–196

Van den Hengel A, Hill R, Ward B, Dick A (2009) In situ image-based
modeling. In: Proceedings of the 2009 8th IEEE internationalsym-
posium on mixed and augmented reality, ISMAR ’09, pp 107–110

Huhle B, Jenke P, Straßer W (2008) On-the-fly scene acquisition with a
handy multi-sensor system. Int J Intell Syst Technol Appl (IJISTA)

Reducing the Gap Between Augmented Reality and 3D Modeling with Real-Time Depth Imaging 13

5(3/4):255–263
Kahn S, Wuest H, Fellner DW (2010a) Time-of-flight based scene re-

construction with a mesh processing tool for model based camera
tracking. In: 5th international conference on computer vision the-
ory and applications (VISAPP), vol 1, pp 302–309

Kahn S, Wuest H, Stricker D, Fellner DW (2010b) 3D discrepancy
check and visualization via augmented reality. In: 9th IEEE inter-
national symposium on mixed and augmented reality (ISMAR),
pp 241–242

Klein G, Murray D (2009) Parallel tracking and mapping on a cam-
era phone. In: Proceedings of the eigth IEEE and ACM interna-
tional symposium on mixed and augmented reality (ISMAR’09),
Orlando, pp 83–86

Kolb A, Barth E, Koch R, Larsen R (2009) Time-of-flight sensors in
computer graphics. In: Proceedings of the eurographics (state-of-
the-art report), pp 119–134

Lepetit V, Fua P (2005) Monocular model-based 3D tracking of rigid
objects: a survey. In: Foundations and trends in computer graphics
and vision, vol 1, pp 1–89

Lindner M, Kolb A, Hartmann K (2007) Data-fusion of pmd-based
distance-information and high-resolution rgb-images. In: Proceed-
ings of the international symposium on signals, circuits and sys-
tems (ISSCS), session on algorithms for 3D TOF-cameras, vol 1,
pp 121–124

MesaImaging (2011) Mesa imaging. Http://www.mesa-imaging.ch
Newcombe R, Davison A (2010) Live dense reconstruction with a sin-

gle moving camera. In: IEEE conference on computer vision and
pattern recognition (CVPR), pp 1498–1505

Oggier T, Lustenberger F, Blanc N (2006) Miniature 3D ToF camera
for real-time imaging. In: Perception and interactive technologies,
pp 212–216

OpenNI (2011) Openni framework. Http://www.openni.org/
OpenSG (2011) OpenSG. http://www.opensg.org
Pan Q, Reitmayr G, Drummond T (2009) Proforma: probabilistic

feature-based on-line rapid model acquisition. In: Proceedings of
the 20th British machine vision conference (BMVC), p 11

Panagopoulos A, Samaras D, Paragios N (2009) Robust shadow and il-
lumination estimation using a mixture model. In: IEEE conference
on computer vision and pattern recognition (CVPR), pp 651 –658

Schiller I, Beder C, Koch R (2008) Calibration of a pmd-camera using
a planar calibration pattern together with a multi-camera setup. In:
The international archives of the photogrammetry, remote sensing
and spatial information sciences, vol XXI. ISPRS Congress, pp
297–302

Shi J, Tomasi C (1994) Good features to track. In: IEEE conference on
computer vision and pattern recognition (CVPR’94), pp 593–600

Webel S, Becker M, Stricker D, Wuest H (2007) Identifying differences
between cad and physical mock-ups using ar. In: ISMAR 2007:
Proceedings of the Sixth IEEE and ACM International Symposium
on Mixed and Augmented Reality, pp 281–282

Wuest H (2008) Efficient line and patch feature characterization and
management for real-time camera tracking. PhD thesis, TU Darm-
stadt

Wuest H, Wientapper F, Stricker D (2007) Adaptable model-based
tracking using analysis-by-synthesis techniques. In: Kropatsch W,
Kampel M, Hanbury A (eds) Computer analysis of iImages and
patterns, lecture notes in computer science, vol 4673, Springer,
Berlin, pp 20–27

Zhou F, Duh HBL, Billinghurst M (2008) Trends in augmented reality
tracking, interaction and display: A review of ten years of ismar.
In: ISMAR 2008: IEEE / ACM international symposium on mixed
and augmented reality, pp 193–202

