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ABSTRACT 
Since the human body is a living organism, it emits various 
life signs which can be traced with an action potential 
sensitive electromyography, but also with motion sensitive 
sensors such as typical inertial sensors. In this paper, we 
present a possibility to recognize the heart rate (HR), 
respiration rate (RR), and the muscular microvibrations 
(MV) by an accelerometer worn on the wrist. We compare 
our seismocardiography (SCG) / ballistocardiography 
(BCG) approach to commonly used measuring methods. In 
conclusion, our study confirmed that SCG/BCD with a 
wrist-worn accelerometer also provides accurate vital 
parameters. While the recognized RR deviated slightly from 
the ground truth (SD=16.61%), the detection of HR is non-
significantly different (SD=1.63%) to the gold standard. 
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INTRODUCTION 
The human body is constantly emitting vital signs, which 
reflect the current mental and physical state of a person. 
These vital parameters such as respiration rate, heart rate, or 
microvibrations of muscles contain crucial information that 
allow to draw conclusions on one’s body processes and 
states, such as stress level, arousal state, the quality of 
sleep, well-being and anomalous situations. Such emitted 
vital signs are controlled by the autonomic nervous system 
and therefore can only be influenced indirectly by the 
human itself. In this paper, we utilize a simple motion 

 
Figure 1. Sensing respiration and heart rate in the state of 

rest. This setup includes 6 sensors: microphone (head), 
Medisana blood pressure monitor (left wrist), PPG of LG G 
Watch Round (left wrist), accelerometer of Shimmer3 IMU 

(right wrist) and the Pulox pulse-oximeter (right index finger). 

sensor for detecting the aforementioned vital signs (HR, 
RR, MV) at the user’s wrist while being in rest and while 
only making use of a single accelerometer, which is 
denoted as seismocardiography (SCG) / 
ballistocardiography (BCG). When only using a single 
inertial sensor, we do not face the problem of a high power 
consuming and complex sensor setup, which is usually the 
case for commonly used technologies, such as 
photoplethysmography (PPG) or electrocardiography 
(ECG). We envision our method to be applied at 
smartwatches in order to track the user’s vital parameters in 
a state of rest, such as when lying on a sofa, which is 
required for the algorithm to provide precise data.  

In this paper, we contribute the following: 

x An energy efficient, unobtrusive method and 
straightforward design of measuring vital parameters 
based on SCG / BCG at the user’s wrist. 

x An algorithm that is capable of measuring three vital 
parameters: heart rate (HR), respiration rate (RR), and 
microvibrations (MV) by merely using a simple 
accelerometer. 

x A comparative study that proves our design to provide 
valid vital parameters. We evaluated that our heart rate 
recognition algorithm is as reliable as the current gold 
standard (SD=1.63%) and the respiration rate only 
slightly differs to the ground truth (SD=16.61%). 
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RELATED WORK 
Wearable devices are widely used in the area of activity 
recognition. The use-cases include medical or rehabilitation 
scenarios as well as general sports or health topics. In this 
section, we provide an overview of related research and 
technologies in the given context. 

Heart Rate Detection 
The most common wearable devices make use of optical 
sensors in order to detect the heart rate and the saturation of 
peripheral oxygen. Thereby, the pulse-oximetry sensor is 
either implemented into a finger-clip [13,14,15,18], or into 
a wrist-worn device, such as a watch. Anliker et al. [1] 
presents AMON, a wrist-worn device capable of measuring 
heart rate, blood pressure, ECG-activity, peripheral oxygen 
saturation, temperature, and physical activity. The authors 
measure the heart rate by utilizing a pulse-oximeter at the 
back of the wrist-worn sensor device. Other related works 
make use of the electrocardiography (ECG) and calculate 
the heart rate based on the ECG signals [10,11]. In these 
publications, the authors attach smart shirts with ECG 
electrodes. In contrast, Garverick et al. [8] use a 
continuous-wave Doppler ultrasound device for measuring 
the heart rate of a fetus. Apart from measuring heart activity 
in a myographic or optical way, we can also determine 
heart activity based on small body movements caused by 
the contraction of the heart. This method is known as 
ballistocardiography (BCG) or seismocardiography (SCG) 
[2,19]. Thereby, sensors such as accelerometers or pressure 
sensors are applied to the human body to measure the 
exiguous movements induced by heartbeats. For that 
reason, the sensors are usually being placed nearby the 
heart (e.g. sternum or clavicle). Bieber et al. [5] recently 
utilized an accelerometer in a smartwatch – which had to be 
placed on the chest - to measure the user’s heart rate. 

Respiration Rate Detection 
There are several ways to detect the respiration rate in a 
wearable setup. The most common and simple setup 
consists of strain gauges, which are worn as a belt around 
the torso [12]. Another approach is to make use of 
accelerometers, which are placed directly on the chest or 
torso [7,16]. Mundt et al. [13] utilize the impedance 
plethysmography, which measures the change in tissue 
volume as a change in impedance on the body surface. 
Apart from the respiration rate, the authors provided the 
monitoring of heart rate, blood pressure, ECG-activity, and 
peripheral oxygen saturation [13]. Di Rienzo et al. [6] apply 
a textile-based transducer for measuring the respiratory 
movements as changes in thorax volume. Kundu et al. [9] 
apply a capacitor to a shirt and measure the respiration rate 
by analyzing the changes in permittivity as a result of tissue 
movement between the electrodes. Bello et al. [3] also use 
capacitive sensing to detect the expansion of the thorax. 
The authors use a shirt with three capacitive sensors, which 
detect changes in capacitance after a textile expansion that 
leads to an increase in electrode distance. Other works 
make use of microphones or nasal airflow sensors [4]. 

Microvibrations / Muscle Tonus Detection 
The most common wearable systems for detecting muscle 
activity are based on accelerometry. Thereby, the use cases 
are very widespread and contain topics such as sleep 
detection, the detection of pathological tremor, the 
detection of epileptic seizures, or general activity 
recognition. In 1962, Hubert Rohracher [17] initially 
investigated the occurrence of low amplitude muscle 
vibrations that he referred to as microvibrations. In this 
work, Rohracher used piezoelectric phono player pickups to 
measure the continuously detectable vibration of the muscle 
tissue. He also mentioned processes that are connected to 
and influenced by the muscle vibration, respectively 
(medication, level of stress, temperature etc.). In contrast to 
microvibrations, which are also measureable in sleep or 
states of unconsciousness, most research is conducted in the 
area of pathological tremors, which tend to disappear in 
these situations [17]. 

VITAL SIGN EXTRACTION WITH ACCELEROMETERS 
The algorithm proposed in this paper works in three 
filtering stages, which provide the extraction of heart rate, 
respiration rate as well as microvibration from a single 
acceleration signal. As a peculiarity of the accelerometer, 
the measured motion is split into three axes, containing the 
valuable information. To cope with the dimensionality, a 
combination of all three axes in a single signal was enabled 
via building the magnitude of the acceleration vectors (1).  

 |�⃗�|  =  √𝑎𝑥² + 𝑎𝑦
2 + 𝑎𝑧²   (1) 

 𝑣[𝑖] ∶= 𝑣[𝑖 − 1] + 𝛼 ∙ (𝑤[𝑖] − 𝑣[𝑖 − 1]) (2) 

 𝑣[𝑖] ≔  𝛼 ∙ (𝑣[𝑖 − 1] + 𝑤[𝑖] − 𝑤[𝑖 − 1]) (3) 

 𝑣[𝑖] ≔ 𝑣[𝑖]²    (4) 

Now, the resulting combined raw signal includes all 
oscillations and is further processed in the subsequent steps. 
Figure 2 shows the three stages of signal recognition in the 
time domain and frequency domain. In the first stage, the 
raw signal is low-passed (2) to capture the breathing 
frequency. Hereinafter, the raw signal is high-pass filtered 
(3) to capture the high frequent microvibrations. In the last 
step, the high-passed signal is further processed by applying 
a squaring algorithm (4) to reduce noise and capture the 
heart rate. Since the filters were applied to a time-discrete 
signal, v describes the input value at the time i. The value w 
describes the current mean value at the time i, while 𝜶 is a 
weighting coefficient. By performing a FFT (Fast Fourier 
Transform) after each filtering step, the resulting 
frequencies can be extracted. Note: to ensure an accurate 
measurement, a resting state such as sleeping or a low 
amplitude activity (e.g. watching TV, sitting resting) is 
required.    



 
Figure 2. Filtering process for detecting respiration, microvibration, and heart rate. The blue color shows the combined raw signal 

in time domain (left side) and frequency domain (right side). When applying a high pass filter, we can easily recognize the 
microvibrations in the frequency domain (red color). Reducing the noise and squaring the signal makes the heart rate visible 

(orange color).

EVALUATION 
To evaluate our sensing approach, we conducted a study 
with 15 participants and compared our measured vital 
parameters with state of the art sensing devices. This way, a 
comparison of the heart rate as well as respiration rate 
values between all devices is enabled. By applying a 
statistical significance test, we determined the actual 
difference in comparison to the other tested devices.  

Study design 
To evaluate the different approaches and devices, we 
designed a study that compared our presented approach to 
state of the art hardware in the area of heart rate and 
respiration rate detection. We recorded data of 15 subjects 
(14 male, 1 female) aged 22 to 50 years (M=31.4 years). All 
subjects where in their optimal BMI and therefore had no 
problems with obesity. To capture the vital parameters, the 
subjects had to wear a pulse-oximeter at the index finger of 
the right arm, as well as the Shimmer3 IMU to log the 
occurring accelerations induced by blood flow and 
respiratory movements. Furthermore, a blood pressure 
monitor (Medisana BW 300 connect) was worn at the left 
arm, as well as a LG Watch R that captured the heart rate 
via an internal photoplethysmography (PPG) sensor. A 
chest worn belt recorded respiratory movements with a 
capacitive electrode, which is sensitive to deformation due 
to respiratory movements. At the head position, a 

microphone was placed to record respiratory noise. The 
devices where applied by a technician to ensure a correct 
individual fixation. While recording the data, the subjects 
were lying on a blanket on the ground and were instructed 
to lie as calm as possible.  

Gathered Signals 
Figure 3 shows the different signals provided by the tested 
devices. Each signal shows a window with the length of 30 
seconds. The signals shown were extracted by the data set 
of subject P09. All signals are aligned in time. The pulse-
oximeter signal (Pulox) shows a clean heart rate signal as 
well as the respiration influence as a change in amplitude 
on the aforementioned. The chestband shows a clean 
respiration signal with a small drift due to environmental 
and electrode displacement effects. The respiration signal 
provided by the head worn microphone shows a small 
change in amplitude for inspiration cycles and increased 
amplitudes for the following expiration cycles. The last 
signal was provided by the Shimmer3 IMU, which 
incorporates the heart rate and respiration rate. Besides this, 
we can perceive an additional signal which is accumulating 
movements in the higher frequency range (microvibrations) 
and some white noise.  



 
Figure 3. The different signals provided by the tested devices. 

Heart rate 
To compare the quality of the heart rate measurement, the 
Shimmer3 IMU, Medisana BW 300 connect blood pressure 
monitor, and LG Watch results were compared to the Pulox 
pulse-oximeter sensing device, which is referred to as the 
gold standard. Table 1 shows the results in comparison. 

Table 1. Comparison of heart rate results of all three tested 
devices and the gold standard (Pulox).  

  Pulox Shimmer3 Medisana LG Watch 
  Gold St. HR Dev. HR Dev. HR Dev. 

P01 70 69 1,43% 69 1,43% 73 4,29% 

P02 67 67 0,00% 66 1,49% 66 1,49% 

P03 66 67 1,52% 65 1,52% 69 4,55% 

P04 68 69 1,47% 70 2,94% 67 1,47% 

P05 64 62 3,13% 62 3,13% 62 3,13% 

P06 71 70 1,41% 70 1,41% 77 8,45% 

P07 67 67 0,00% 72 7,46% 73 8,96% 

P08 68 67 1,47% 69 1,47% 66 2,94% 

P09 73 72 1,37% 72 1,37% 79 8,22% 

P10 63 60 4,76% 61 3,17% 59 6,35% 

P11 70 70 0,00% 72 2,86% 68 2,86% 

P12 81 82 1,23% 80 1,23% 78 3,70% 

P13 82 78 4,88% 79 3,66% 78 4,88% 

P14 58 57 1,72% 57 1,72% 70 20,69% 

P15 56 56 0,00% 56 0,00% 57 1,79% 

  1,63% 2,32% 5,58% 

Comparing all four devices (Pulox, Shimmer3, Medisana, 
and the LG watch) yielded significant differences by a one-
way ANOVA (F3,42=11.99; p<.0001). A Tukey HSD Test 
determines that the Shimmer3 (M=1.63%; SD=1.55%) and 
the Medisana (M=2.32%; SD=1.72%) does not show any 
statistically significant differences towards the Pulox, 
which is the gold standard. There are no differences 
between the Shimmer3 and Medisana. The test confirms 
that the Shimmer3 and the Medisana are both capable of 
determining the correct heart rate. Furthermore, the Tukey 
HSD Test found the LG watch (M=5.58%; SD=4.86%; 
p<.01) to perform significantly worse than all the other 
devices. Even though the LG watch cannot compete to the 
gold standard, it still provides “good-enough” results. 
Respiration Rate 
For determining the respiration, the capacitive chestband, 
Shimmer3 IMU, and Pulox pulse-oximeter where compared 
to the results measured by the head worn microphone. As 
expected, the pulse-oximeter could also be used for 
determining the respiration rate due to respiratory 
influences (change in amplitude) on the captured heart rate 
signal. Table 2 shows the results of the comparison. 

Table 2. Comparison of the respiration rate results of all 
tested devices and the microphone as the gold standard. 

  Micro. Chestband Shimmer3 Pulox 
  Gold St. RR Dev. RR Dev. RR Dev. 

P01 13 13 0,00% 13 1,41% 12 7,69% 

P02 11 11 0,00% 10 9,09% 10 9,09% 

P03 13 13 0,00% 13 1,41% 10 23,08% 

P04 14 14 0,00% 15 7,14% 13 7,14% 

P05 10 10 0,00% 10 2,54% 11 10,00% 

P06 14 14 0,00% 13 5,83% 13 7,14% 

P07 16 16 0,00% 19 18,75% 16 0,00% 

P08 16 16 0,00% 23 43,75% 12 25,00% 

P09 13 13 0,00% 16 23,08% 13 0,00% 

P10 15 15 0,00% 15 2,34% 12 20,00% 

P11 15 15 0,00% 16 7,42% 15 0,00% 

P12 13 13 0,00% 16 23,08% 17 30,77% 

P13 15 15 0,00% 16 7,42% 15 0,00% 

P14 9 9 0,00% 12 33,33% 11 22,22% 

P15 8 8 0,00% 13 62,50% 10 25,00% 

  0,00% 16,61% 12,48% 

 

The data analysis of the respiration rate from all devices 
(microphone, chestband, Shimmer3, and the Pulox) 
provided statistically significant differences by a one-way 
ANOVA (F3,42=11.67; p<.0001). While the chestband 
provided exactly the same results as the microphone, the 
Shimmer3 (M=16.6%; SD=17.94%; p<.01) and the Pulox 
(M=12.47%; SD=10.8%; p<.01) performed significantly 
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worse than the gold standard and the chestband, following 
the results of a Tukey HSD Test. Significant differences 
between the Shimmer3 and the Pulox could not be 
determined. In conclusion, we can see that the Shimmer3 
and the Pulox are both capable of sensing the respiration 
rate, but suffer of a slight inaccuracy. 

CONCLUSION 
In this paper we show that wrist-worn devices are capable 
of detecting vital signs such as heart rate, respiration rate 
and microvibration. The study results indicate that by using 
standard consumer products, such as smartwatches, human 
vital signs can be captured by reading accelerometer data 
and applying our algorithms to it. This way, vital 
parameters can be logged in any resting states or periods of 
low amplitude movements via devices that are using built-
in accelerometers. Now, this enables all smart devices (with 
a built-in accelerometer) to capture vital parameters that 
were not detectable before because of a missing 
photoplethysmography (PPG) sensor. Moreover, making 
use of an accelerometer instead of a PPG lowers energy 
consumption drastically. (Typical power consumptions: 
PPG, 1 – 50mW; Acc., 0.5 – 2mW). Even though the 
detected respiration has slight inaccuracies, the heart rate 
recognition could be proven to match the state-of-the-art 
standards, as it is even more accurate than the PPG. Several 
post-studies indicate that elastic underground surfaces (e.g. 
a mattress) can even raise the accuracy level, since such 
surfaces act as a resonator. As an effect, this increases the 
recognition of respiratory movements up to a flawless 
detection. 

FUTURE WORK 
By applying further algorithms, additional vital parameters 
such as heart rate variability or respiration rate variability 
could be determined. This could provide more complex 
insights into the topic of stress detection. Furthermore, the 
detection and monitoring of microvibrations and vital signs 
such as heart rate variability etc. could possibly contribute 
to a more detailed sleep analysis.  
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