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ABSTRACT 
In this paper, we describe a self adapting algorithm for smart 
watches to define individual transitions between motion 
intensities. The algorithm enables for a distinction between 
high-amplitude motions (e.g. walking, running, or simply 
moving extremities) low-amplitude motions (e.g. human 
microvibrations, and heart rate) as well as a general doffed-
state. A prototypical implementation for detecting all three 
motion types was tested with a wrist-worn acceleration 
sensor. Since the aforementioned motion types are user-
specific, SmartMove incorporates a training module based 
on a novel actigraphy-based sleep detection algorithm, in 
order to learn the specific motion types. In addition, our 
proposed sleep algorithm enables for reduced power 
consumption since it samples at a very low rate. 
Furthermore, the algorithm can identify suitable timeframes 
for an inertial sensor-based detection of vital-signs (e.g. 
seismocardiography or ballistocardiography).  
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INTRODUCTION 
With the proliferation of wearable devices and the fast-
growing number of health services, detecting reliable vital 
signs is of high importance. Nevertheless, current wearable 
devices suffer of inaccuracy or critical motion artifacts in 
cases of measurements taken in unsuitable situations. Such 
sources of error, e.g. measuring while a device is mounted 
incorrectly, lead to erroneous and unreliable data. As a result 
of this, wearable measurement devices such as smartwatches 
should be able to evaluate critical states in which data 
validity cannot be guaranteed. Additionally, actigraphs in 
sleep science or fitness trackers for pulse detection are prone 
to detect sleep (ghost sleep) or pulse (ghost heart rates) in a 
doffed state. Avoiding this type of artifacts is crucial when 
feeding such data in important health-related services. In this 
paper, we contribute: 

• An algorithm, which distinguishes between three motion 
intensities 1) high-amplitude motion, 2) low-amplitude 
motion, 3) doffed (see Figure 1) 

• A Self-Adapting user dependent motion threshold 
• An evaluation of the introduced sleep detection 

algorithm, which provides data for sleep analysis and 
Adaptation  

• An evaluation of position dependency and over time 
effects of the sensor placement and mounting   

RELATED WORK 
Nowadays, wearable devices, such as smartwatches can also 
be used to detect various health related information. These 
information, contain vital parameters, such as heart rate 
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Figure 1: Detectable motion types: 1) high-amplitude motions (e.g. jogging, walking), 2) low-amplitude motions (e.g. heart rate, 

microvibration), 3) doffed. The colored dots indicate the cross reference to the detection states in Figure 2. 



(HR), heart rate variability (HRV), respiration rate (RR), 
respiration rate variability (RRV), human microvibrations 
(MV), sleep related data, and several others. Since basic 
built-in sensors, such as accelerometers or gyroscopes, 
already provide a sufficient quality for recognizing the 
aforementioned data, standard consumer devices can be 
applied for medical or health-related applications [2]. 

High-Amplitude Motion 
The term describes a strong motion that occurs globally 
(whole body) during human activity (e.g. walking, running), 
or locally in activities of daily living (e.g. at involved limbs 
while typing on a keyboard, or characteristic arm movements 
while eating in a sitting position). Subsequently, we present 
work that relates to high-amplitude motions.  

Many research papers analyze the recognition of complex 
body motions and activities via accelerometers [2, 4, 9, 15]. 
Those papers always address strong motions that involve 
high values of g-force. 

Low-Amplitude Motion 
The term describes a tiny motion that is induced by vital 
functions of the human body (e.g. respiration, heart rate, 
microvibration). It is measurable at all body positions, in 
timeframes of global (whole body) or local inactivity. In the 
following we present related work in the area of low-
amplitude motions.  

Vital Data  
Besides consumer devices, such as fitness trackers or 
smartwatches, many research projects focus on vital sign 
detection via novel wearable devices. Anliker et al. presented 
AMON: A Wearable Multiparameter Medical Monitoring 
and Alert System [1]. Besides such optical HR detection 
approaches, techniques as presented by Bieber et al. [2], or 
Hernandez et al. [10] present HR detection via wrist-worn 
SCG. In previous work, we investigated the performance of 
this measurement approach compared to commonly applied 
technologies (Haescher et al. [7]). Nevertheless, the 
aforementioned devices show sensor noise and also try to 
detect a HR even if the device is not worn, which can result 
in so called ghost heart rates [8]. 

Sleep Detection 
Apart from position changes and short quick motions, sleep 
mostly consists of rest and inactivity (see Figure 3). Besides 
the polysomnography (PSG), which marks the gold standard 
in sleep science, wrist-worn actigraphs enable for a less 
obtrusive sleep detection. In addition, these devices are not 
fixed to a certain location, such as a sleep laboratory. 
Actigraphy devices utilize sleep scoring algorithms to 
distinguish between states, such as being awake or being 
asleep. Renown algorithms include the work of Mullaney et 
al. [12], Webster et al. [16], Cole et al. [5], Jean-Louis et al. 
[11], and Sadeh et al. [14]. The basic idea in the 
aforementioned papers is based on counting a weighted 
activity score. If the score exceeds a pre-defined threshold, 
wakefulness is detected and vice versa. Since the algorithms 
are based on activity scores (e.g. counting the number of zero 

crossings per accelerometer axis within a particular epoch), 
a continuous sampling is required. Furthermore, the 
algorithms do not allow for a distinction between 1) being 
worn while sleep or 2) being doffed. This leads to an 
incorrect or deficient sleep detection (ghost sleep). 

Microvibrations 
The human body is constantly moving, even in times of rest 
(e.g. while sleeping). Those tiny motions were reported first 
by Hubert Rohracher [13]. Rohracher detected continuously 
measurable motions of the muscles in endotherms. He also 
stated that compared to pathological tremor, which often 
vanishes in sleep, MV are always present. Furthermore, he 
reported changes in amplitude and frequency of the MV due 
to influences, such as temperature, medication, as well as 
physical or mental stress. He also reported a correlation or 
interference between MV and pulse, even though vibrations 
remained at animals after removing the heart. Gallasch et al. 
[6] measured MV at the upper limbs before and after 
stopping the blood flow via a blood pressure cuff. In contrast 
to Rohracher, who utilized piezoelectric phonograph pickups 
in his initial studies, Gallasch et al. applied accelerometers to 
measure the MV. 

SMARTMOVE 
Since the requirements for data validity in a medical context 
are extraordinary high, measurement artifacts need to be 
identified. This has to be done in order to ensure a high 
detection quality and to avoid critical misinterpretations.  

We want to overcome these problems by introducing an 
algorithm capable of distinguishing between three types of 
motion 1) high-amplitude motion, 2) low-amplitude motion, 
3) doffed. We encountered thus by applying the proposed 
algorithm several benefits can be achieved: 

• A Simple and fast distinction between general activity, 
resting states, and a doffed device 

• A Determination of suitable timeframes for sensing vital 
signs (e.g. accelerometer-based SCG) 

• An Energy efficient and simple sleep detection 
algorithm to enable implicit adaptation of motion 
thresholds and dynamic adaptation to changes in 
detection over time or between individuals  

• An Avoidance of noise-based artifacts due to 
measurements conducted while the device was doffed 
(e.g. ghost HR, ghost sleep, etc.)   

• A Novel energy-saving mode, due to suspended vital 
data measurements during lengthy doffed periods. 

Implementation 
The basic idea of SmartMove is to make use of the human 
motions (e.g. MV and vital signs) to detect, if a device is 
actually worn and if so, which intensity of motion is present. 
Since the human body is constantly moving as shown by 
Rohracher [13], a distinction between being worn or being 
doffed is made possible. Therefore, a difference between the 
first state (doffed) and all remaining states (low- and high-
amplitude motion) is characterized as a change in energy.  



For a discrete signal in time domain this concludes to:  
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Since the measured acceleration signal also contains noise 
and gravity, which can be identified as an offset in signal 
energy over time, the variation around the mean value is a 
good feature to analyze the different motion types. For this 
purpose, we computed the variance (see Equation 2). Since 
we applied a three-dimensional accelerometer, we computed 
the variance for each of the three individual axes separately 
to avoid calibration due to orientational dependencies. After 
each value was determined, we computed the mean variance 
for the three-dimensional signal (see Equation 3).  

 -./(1) =
1
4

15-µ &

'

5+)

	 (2) 

 -./78 =
(-./9 +	-./; +	-./<)

3
 (3) 

The detection algorithm uses pre-trained thresholds to 
distinguish between the states 1) high-amplitude motion, 2) 
low-amplitude motion, 3) doffed. 

Threshold Adaptation 
We are convinced that the detection of vital data is performed 
best in an implicit manner. This means, that the user should 
not be forced to adjust or train the algorithms in order to 
perform reliably. As a result of this persuasion, we developed 
an algorithm (See Figure 4), which learns without explicit 
input or user-initiated training phases. To learn the individual 
thresholds for distinguishing between the previously 
proposed states, we selected three suitable training scenarios. 
To enable the distinction process, the doffed threshold has to 
be trained first since this information is needed for training 
low-amplitude motions. Therefore, the adaptation process is 
presented in the order of first determination. 

Doffed Threshold 
For the first scenario, we selected charging the watch, since 
this state enables for learning the sensor’s individual noise 
level in a doffed state. After the device’s power connecter 

was attached, we check for a homogeneous signal and start 
the doffed threshold training. A signal is considered as 
homogeneous if its max and min value are within the bounds 
of plus-minus four times the standard deviation added to the 
mean of the normed signal (see Equation 4, 5, 6).  

4>?@78 % = 	 1*& + A*& + B*& (4) 

max 1), 1& … 1* ≤ 4 ∙ KL(4>?@78) + M(4>?@78) (5) 

min 1), 1& … 1* ≥ -4 ∙ KL(4>?@78) + M(4>?@78) (6) 

In case either the maximum or minimum is bigger or smaller 
than two times of its standard deviation threshold, the signal 
is inhomogeneous. In the consecutive training phase, we 
computed the per axis variance for a window size of 1024 
samples. The devices sampling rate was set to 100Hz which 
led to a sampling time of 10.24 seconds. 

Low-Amplitude Motion 
For the second scenario, the device has to be worn during an 
activity that includes phases of low-amplitude motion. To 
ensure this requirement, we included a sleep detection 
algorithm (See Figure 2), since sleep mostly consists of low-
amplitude motions. The algorithm scores inactivity by 
checking angular changes in sensor orientation in minutely 
transitions. This leads to a sampling rate of ca. 0.017Hz (once 
per minute). Since typical sleep detection algorithms also 
check for motion during the minute, their sampling rate is 
much higher (around 30Hz). This rate fits the purpose, since 
frequencies of 12Hz are sufficient for detecting human limb 
motion. In order to meet the Nyquist-Shannon theorem, a 
sampling rate of 24Hz is needed. Since our algorithm scores 
the motion as a change in position instead of high sampled 
motion scores, we can achieve similar results for lower 
sampling rates. This way, the devices can stay in low power 
modes for longer periods and thus save energy. If the angular 
change during a minutely transition exceeds a pre-defined 
threshold, the minute is scored as awake. To filter artifacts, 
we weighted the number of minutes awake in a defined 
timeframe to score an interval as asleep or awake. Based on 
the sleep detection, we algorithmically selected timeframes 
of homogeneous motion signals and trained the low-

 
Figure 2: Graph of proposed sleep detection algorithm. Blue areas show wakefulness, green areas indicate that the device is 

not worn (doffed), whereas red areas indicate sleep. (signal smoothed with moving average) 



amplitude threshold by repeatedly computing the mean 
variance of the acceleration signal (N = 1024, T = 10.24s; f = 
100Hz). The difference between an awake acceleration 
pattern versus a sleep acceleration pattern is visualized in 
Figure 3. The angular changes are computed as a difference 
between two vectors in three-dimensional space with the 
acceleration coordinates x, y, z.  As seen in the following 
formula (# marks the vector of the previous minute, whereas 
Q marks the vector of the current minute): 

	 cosα	 = 	
V	*	X

V 	∙	 X
	;	# =

1
A
B
	,	Q =

1
A
B
	 (7)	

High-Amplitude Motion 
High amplitude motions are classified as motions that 
exceeded the trained low-amplitude threshold, or the 
measurement range of the applied accelerometer (+/- 2g in 
our setup). To define individual motion ranges and nuances, 
we also trained typical high-amplitude motion levels. This 
means that the mean variance level of high-amplitude 
motions is constantly adapted as the motion type occurs. 

 
Figure 3: 3D-acceleration signal in m/s2. Part 1) shows the 

signal for a whole day including mostly high amplitude 
motions, while part 2) shows mostly low-amplitude motions 
during the night. Part 3) shows a section of the x-axis with 

low-amplitude motions only. 

 
Figure 4: threshold training for detecting doffed-state and 

low-amplitude motion. 

SLEEP STUDY 
Since the sleep detection is a crucial part of the threshold 
adaptation module of SmartMove, we conducted a small 

study in a sleep laboratory to ensure its feasibility. The study 
involved measuring, seven subjects including six males and 
one female (mean age 56.4 +/- 11.4 yrs; mean height 173.6 
+/- 6.3 cm; mean weight 100.43 +/- 17.9 kg; mean BMI 
33.34 +/- 5.5). Every subject was undergoing a full 
polysomnography (PSG) while wearing an additional 
smartwatch, which was running three sleep algorithms. We 
evaluated our algorithm against a PSG and two well-
established actigraphy algorithms introduced by Cole et al. 
[5], and Sadeh et al. [14]. Since the algorithms of Cole et al. 
and Sadeh et al. require a sampling rate of 25Hz, the raw-
data was downsampled to a single value per minute 
(~0.017Hz) in case of our algorithm. 

Comparison to Clinical Polysomnography 
To compare our proposed sleep detection algorithm to a 
clinical PSG, we tested the detection of four parameters 
(Sleep onset latency – SOL; total sleep time – TST; sleep 
efficiency – SE; wake time after sleep onset – WASO). For 
each parameter, we conducted a one-way ANOVA analysis 
to detect if the results of our algorithm differ significantly in 
comparison to a clinical PSG. The results for the SOL (F1,6 = 
4.90; p = 0.0688) show no significance between our 
proposed algorithm (M = 14.43; SD = 14.81) and the PSG (M 
= 26.14; SD = 14.74). In case of the TST (F1,6 = 0.10; p = 
0.763), also no significance was found between our 
algorithm (M = 278.00; SD = 51.63) and the PSG (M = 
285.86; SD = 67.93). The WASO results (F1,6 = 0.37; p = 
0.565) for our algorithm (M = 109.00; SD = 51.63) showed 
also no significance in comparison with the PSG (M = 93.57; 
SD = 64.31). The same could be perceived for the SE (F1,6 = 
0.10; p = 0.763) which also showed no significance by 
comparing our algorithm (M = 0.7183; SD = 0.1334) to the 
PSG (M = 0.7386; SD = 0.1755). In conclusion, our 
algorithm is comparable to a PSG approach. 

Comparison to Actigraphy Algortihms 
The results for our algorithm show a sensitivity of 81.10% 
and a specifity of 49.58%. The algorithm presented by Cole 
et al. scored a sensitivity of 71.66% as well as a specifity of 
50.91, whereas the sensitivity of the algorithm presented by 
Sadeh et al. scored 82.55% and a specifity of 32.56%. To 
check the significance of our findings, we conducted a one-
way ANOVA significance test. In case of the specifity, the 
test showed no significant differences (F2,12 = 3.49; p = 
0.0639) between the algorithms of Cole et al. (M = 50.90; SD 
= 24.32), Sadeh et al. (M = 32.55; SD = 19.35), and our 
proposed algorithm (M = 49.58; SD = 23.33). In case of the 
sensitivity the test showed significance (F2,12 = 4.54; p = 
0.034). A Tukey HSD test proved a significant difference (p 
< .05) between the algorithm of Cole et al. (M = 71.65; SD = 
22.84) and Sadeh et al. (M = 82.55; SD = 13.02) in terms of 
Sensitivity. Our proposed algorithm showed no significant 
difference in terms of sensitivity (M = 81.09; SD = 13.64). In 
order to be complete, we computed the F-measure and 
accuracy (see Equations 8 and 9) for every algorithm to 
further evaluate the performance. The results show a F1-
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score of 83.9 % in case of the algorithm proposed in this 
paper, whereas the algorithm of Cole et al. scored 79.4% as 
well as 80.2% for Sadeh’s algorithm. The accuracy showed 
71.4% and 70.5% for Cole’s and Sadeh’s algorithms, 
whereas our algorithm reached 76.2%.  

	 [) = 2	 ∙ 	
]?^_`a`>%	 ∙ ?^_#bb
]?^_`a`>% + ?^_#bb

	 (8) 

	 .cc = 	
de + d4

de + [e + [4 + d4
	 (9) 

Results 
We analyzed the performance and feasibility of the sleep 
detection algorithm presented in this paper, by comparing it 
to the golden standard of PSG as well as state of the art 
actigraphy algorithms. In case of the direct comparison with 
the PSG, none of the tested parameters (SOL, TST, WASO, 
SE) deviated significantly. The comparison of the proposed 
algorithm and two state-of-the-art actigraphy algorithms also 
showed no significant deviation. However, we found 
indicators, such as the F-measure and accuracy, that point out 
that our algorithm performed slightly better. A reason for this 
can be found in the discriminative power of the angle-
dependent, minutely motion-detection feature that 
performed best compared to the weighed epoch feature 
applied in the algorithms of Cole et al. and Sadeh et al., 
which can be seen in the ROC-curve of Figure 5. Since the 
sampling rate in our approach is smaller by a factor of 1500, 
the acceleration sensor in a plain sleep detection scenario 
could stay in a low-power mode for a much longer duration. 
This enables the presented approach for reducing the overall 
energy consumption. 

 
Figure 5: comparison of discriminative power for sleep scoring 

features. The farther the graph bends away of the diagonal, 
the better the discriminative power of the approach. Graph 

shows exemplary result of one subject (S06). 

POSITION DEPENDENT SIGNAL ANALYSIS 
In our general analysis, we intended to analyze mainly wrist 
mountings, since the proposed algorithm is developed for the 
use in smartwatches. Nevertheless, a smartwatch worn on the 

wrist can be placed on different parts of the human body. 
Since arm positions can vary in everyday scenarios, we 
designed a study to analyze the level of motion at different 
body positions. Besides the aforementioned fact such 
algorithms could also be integrated in other smart wearables, 
like smartpatches or smart jewelry. Therefore, a general 
analysis of low-amplitude motions on different body 
positions could be beneficial.    

Study Design 
5 subjects (4 males, 1 female; mean age 33.2 +/- 8.6 yrs; 
mean height 178 +/- 9.9 cm; mean weight 76 +/- 8.6 kg; mean 
body fat 18.08 +/- 5.2 %; mean BMI 24.0 +/- 1.5) 
participated in the study.   Each subject had to lay on a bed, 
while staying as calm as possible. During the test a three-
dimensional low-noise accelerometer (Shimmer 3 IMU) was 
placed on 15 body positions namely: 1) left and 2) right calf; 
3) left and 4) right thigh; 5) left and 6) right chest; 7) neck; 
8) left and 9) right temple; 10) left and 11) right upper arm; 
12) left and 13) right wrist; 14) left and 15) right back of the 
hand (See Figure 6). We excluded the belly, since the motion 
at this particular body position is considered to be of a high 
amplitude (due to missing bone structure and strong 
respiratory movements).  

In each scenario, the sensor was connected to the bare skin 
via a double-sided sticky tape. At each position, we 
conducted three consecutive measurements of a length of 
10.24 seconds (equals 1024 samples at a sampling rate of 
100Hz). This sums up to a total number of 225 
measurements. We then calculated the variance for each 
window and computed the average for each body position. 

 
Figure 6: Sensor placements for position-dependent signal 

analysis. Pie charts show the variance measured at each 
position compared to the overall cumulative variance (all 

positions combined). 

Results 
Figure 7 shows the results of the measurements. Each body 
position shows a different level of motion and therefore a 
different level of variance. This effect is caused by the 
changing proximity to sources of excitement, such as the 
heart, lungs, or muscles. In addition, factors, such as varying 
tissue structure, BMI, state of health (e.g. mental stress, 
blood pressure etc.)  influence the measurements. The 
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determined maximum average of the variance of all body 
positions was found to be VAR = 0.0029 m/s2, whereas the 
overall minimum was found with VAR = 0.0005 m/s2. 

 
Figure 7: Position dependent average of variance (5 subjects; 

15 body positions each). 

OVER TIME SIGNAL ANALYSIS 
In order to further analyze the different energy levels (doffed, 
low-amplitude motions, high-amplitude motions) over time, 
we tested three different attachments (glued to the wrist, 
wristband loosely mounted, wristband tightly mounted) as 
well as two body positions (see Figure 8) by using one sensor 
attached on one test subject. The single subject and single 
device study-design for the over time analysis was chosen in 
order to reduce the degrees of freedom (influencing 
variables, such as: specific sensor mountings, sensors level 
of noise or non-linearity, physiological characteristics). 

Study Design 
The subject had to lie down on a bed. During the 
measurement, the subject was advised to lie as calm as 
possible (trying to avoid even tiniest motions). To ensure that 
the subject had enough time to relax, the first five minutes 
where excluded from the measurement. After this phase of 
relaxation, the measurement started and data was collected 
for 20 consecutive minutes. In this timeframe, every 10.24 
seconds a measurement was taken. The applied sampling rate 
was 100 Hz. This led to data windows of 1024 samples. Each 
data window was then used to compute the variance (as 
described in the aforementioned equations 2 and 3). 

 
Figure 8: On the left, the wrist is resting beside the body 

whereas on the right, the wrist is resting on the subject’s chest. 

Doffed Measurement Over Time 
For the initial measurement, the sensor (Shimmer 3 IMU) 
was connected to the charging dock while recording data in 
an empty room for 20 minutes. The resulting graph can be 
seen in Figure 9 (purple colored graph). The variance 
measured characterizes the deviation around the mean level 

of noise provided by the internal acceleration sensor (Kionix 
KXRB5-2042). According to the data sheet, the acceleration 
sensors root-mean-square noise level at 100Hz bandwidth 
was reported with 5.09 * 10-3 m/s2. 

 
Figure 9: overview of all 20 minute measurements. The 

different mountings are marked by the blue, green, and red 
colored graphs. The doffed state is shown by the purple 
colored graph, whereas the measurement on the chest is 

marked by the orange colored graph.  

Sensor Mounting Over Time  
In order to analyze the sensor’s variance over time while 
being worn, as well as the influence of the individual 
mounting (i.e. wristband or sticky tape), we performed three 
measurements with different mounting techniques. For the 
first measurement, we glued the sensor to the wrist by 
applying double-sided sticky tape. The resulting graph for 
the 20 minute measurement is shown in Figure 9 (blue 
colored graph). In the second test, we applied a wrist strap 
that was loosely mounted. The resulting graph can be seen in 
Figure 9 (green colored graph). In the last mounting scenario, 
we also applied a wrist strap, but mounted it very tightly. The 
resulting graph can be seen in Figure 9 (red colored graph). 
The measurements clearly indicate higher variance levels for 
all three mountings. This shows that a worn sensor can be 
clearly distinguished from a doffed sensor. Moreover, the 
tight mounting shows a lower variance level, since the 
movability of the sensor is reduced by the tight strap. As a 
result of this, a similar input energy (i.e. HR impulse) leads 
to a smaller deflection of the sensor. Nevertheless, the 
variance level of the tightly mounted sensor is continuously 
higher than the variance level of the doffed sensor. 

Body Position Over Time 
To check the level of variance over time in dependence on 
the body position, the sensor was placed on the chest. The 
resulting graph of the 20 minute measurement can be seen in 
Figure 9 (orange colored graph). Due to the fact that the chest 
is the source of the most energetic body movements in total 
rest (i.e. respiration or HR), the variance signal is clearly 
higher than all of the other measured signals of this test. 
Since motions such as the heart pumping blood through our 
vessels are induced here, we consider this position as an 
optimal place to measure the upper threshold for low-
amplitude motions on the human body. 
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Results 
The resulting thresholds of all scenarios tested over time can 
be seen in Figure 10. Based on the findings the low-
amplitude motion range is defined as the lowest value of the 
wristband with tight mounting measurement (lower 
threshold; VAR = 0,000278 m/s2) to the highest value of the 
wrist placed on the chest measurement (upper threshold; 
VAR = 0,00165 m/s2). The doffed threshold is defined by the 
highest value of the doffed measurement (VAR = 0,000141 
m/s2). The influence of mounting tightness can be seen 
clearly by the drop in variance between a tightened (VAR = 
0,000278 m/s2) or loosened (VAR = 0,000491 m/s2) wrist 
strap. The highest variance occurred during the test in which 
the wrist was resting on the subject’s chest (VAR = 0,00165 
m/s2). All measurements that involved wearing the sensor on 
the body could clearly be distinguished (in terms of variance 
level) from the state in which the sensor was being doffed.  

By comparing the results of this test to the results of the 
previously discussed position-dependent signal analysis (see 
Figure 7), a correlation between the low amplitude 
thresholds can be perceived. The overall minimum of the 
previous test showed a variance level of 0.0005 m/s2, which 
fits perfectly in the observations made in this test. Solely, the 
average maximum variance was higher with 0.0029 m/s2. We 
assume that this effect is caused by the mounting, since the 
results in Figure 7 relate to a sensor that was glued directly 
to the skin by using double-sided sticky tape, whereas the 
results in this test relate to a sensor glued to the wrist which 
was then placed on the chest (see Figure 8). Furthermore, the 
number of participants differs, which means the human 
factor in this test (body position over time; 1 subject) is much 
higher compared to the previously presented test (position 
dependent signal analysis; 5 subjects).  

 
Figure 10: The resulting thresholds for all measured scenarios. 

ENVISIONED SCENARIOS 
By using our proposed algorithm and utilizing our threshold 
we achieve an improved activity, sleep, and vital data 
recognition. In the following, we describe scenarios, which 
could benefit from the outcomes of this paper. 

Application other Wearable Devices 
Besides smartwatches, our algorithm could be also applied 
to other wearables, such as smartpatches or smart jewelry. 
This way, the same benefits as mentioned in the sections 

before could be transferred to new device categories and 
wearing- as well as detection-scenarios. 

Homogeneous Multi-Sensory Setups 
Since accelerometer-based SCG is dependent on low-
amplitude motions to detect valid parameters, a detection of 
such states would be mandatory. Nevertheless, the current 
level of motion can differ between the different limbs 
measured. In a homogeneous, multi-sensory wearable 
scenario with different wearing positions, our algorithm 
could detect which limb or body position is in a state of low-
amplitude motion. This way, a valid detection of the specific 
sensor could be enabled.  

Heterogeneous Multi-Sensory Setups 
Optical heart rate detection techniques based on 
photoplethysmography (PPG) sensors can fail when not 
worn tightly, applied to inked or dark skin and consume 
significantly more power than accelerometer-based SCG or 
BCG approaches. This difference becomes crucial in a 
wearable scenario where battery performance is very limited.  
Nevertheless, PPG based approaches perform more reliably 
during high-amplitude motions. By detecting the current 
motion type, a system consisting of PPG and acceleration 
sensors represents the ideal detection technique for every 
situation (switch to optical sensing in case of high-amplitude 
motions or switch to inertial sensing during low-amplitude 
motions). This way, a high validity of data can be achieved 
while reducing the energy consumption of the wearable 
device. 

Relaxation Measurement 
Since low-amplitude motions are dominant during phases of 
relaxation, the duration and amplitude of the motion can be 
used to classify the current level of relaxation. Moreover, an 
additional vital-data measurement (e.g. accelerometer based 
SCG) could be enabled to further analyze the relaxation state. 

Evaluation of Physiotherapy 
Since the treatment of a physiotherapy cannot be evaluated 
in a proper way, the individual and subjective perception of 
each patient remains the measure for treatment quality. If 
health issues remain, the patient may evaluate the treatment 
with a negative bias. Since tensed and relaxed muscles 
provide a different movability of tissue, the variance at the 
same body position may change. By conducting a pre and 
post physiotherapy variance and SmartMoves low-amplitude 
threshold, a possible change in amplitude could be 
recognized to evaluate the quality of the treatment. 

CONCLUSION 
In this paper, we presented an algorithm to define dynamic 
thresholds that enable for a distinction between three general 
states 1) high-amplitude; 2) low-amplitude motion; 3) doffed 
motion. By constantly adapting those thresholds, a training 
to any individual wearing situation and user can be 
accomplished. This is possible due to the application of 
adaptation states, such as charging the device or sleeping 
while wearing the device. Since the proposed algorithm can 
be applied in a pre-filtering stage, artifacts that result from 

0
0,0002
0,0004
0,0006
0,0008
0,001

0,0012
0,0014
0,0016
0,0018

1 9 17 25 33 41 49 57 65 73 81 89 97 105 113 121

V
ar

ia
nc

e 
 [m

/s
²]

Measurements [n]

Thresholds

CHEST GLUED WRISTBAND LOSE

WRISTBAND TIGHT DOFFED

lo
w

-a
m

pl
itu

de
do

ff
ed



the device being doffed can be avoided. Furthermore, the 
algorithm detects timeframes of low-amplitude motions, thus 
enabling for choosing suitable vital-sign detection windows 
in SCG or BCG detection scenarios. As a byproduct, the 
algorithm enables for a low-power sleep detection. The 
results of the performed signal analysis showed that the 
algorithm works with a simple accelerometer. Every wearing 
scenario could be easily distinguished from being doffed. 
Nevertheless, the tests showed that the specific mounting as 
well as the body position the sensor is attached to have a 
strong influence on the resulting variance signal. These 
findings again underline the necessity of an adaptive and 
user-dependent threshold adaptation. 

FUTURE WORK 
In future work, we would like to analyze the algorithm’s 
behavior in field tests on different customary devices. 
Furthermore, we like to investigate the acceleration 
amplitude for high and low-amplitude motions in an 
extensive study with more test subjects. Moreover, an 
analysis and definition of further states could be investigated. 
In future research, the use of additional sensor types, such as 
gyroscopes or magnetometers, could be taken into account. 
Moreover, we envision to test the possibility of reducing the 
energy consumption of PPG-based devices by initiating 
measurements based on the current motion state. This could 
include substituting PPG measurements by SCG approaches 
if possible. By doing this, we envision a further reduction of 
the energy consumed, especially in wearable scenarios.  
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