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Figure 1. AGIS is a smartwatch-based system, which is capable to learn and recognize tools based on their emitted sounds, 

characteristic motions, and vibration patterns. In this example, we can already see unique differences in the FFT spectrum of the 
emitted sound wave from a a) Hammer Drill, b) Jigsaw, c) Drilling Machine, and a manual d) Hammer. Based on this data, AGIS is 

capable in estimating a daily HAV exposure dose, which hasn’t been demonstrated for a wearable system yet. 
ABSTRACT 
Over the past three decades, it has been known that long-
lasting and intense hand-arm vibrations (HAV) can cause 
serious diseases, such as the Raynaud- / White Finger- 
Syndrome. In order to protect workers nowadays, the long-
term use of tools such as a drill, grinder, rotary hammer etc. 
underlie strict legal regulations. However, users rarely 
comply with these regulations because it is quite hard to 
manually estimate vibration intensity throughout the day. 
Therefore, we propose a wearable system that automatically 
counts the daily HAV exposure doses due to the fact that 
we are able to determine the currently used tool. With the 
implementation of AGIS, we demonstrate the technical 
feasibility of using the integrated microphone and 
accelerometer from a commercial smartwatch. In contrast to 
prior works, our approach does not require a technical 
modification of the smartwatch nor an instrumentation of 
the environment or the tool. A pilot study shows our proof-
of-concept to be applicable in real workshop environments. 

ACM Classification Keywords 
H.5.2: [User interfaces] – Input devices and strategies. 

INTRODUCTION 
Most tools used by handcrafters or heavy workers emit 
considerable vibrations that spread throughout the whole 
body. Due to the long-lasting and intense vibration of hand 
and arm, irreparable damage can be caused to our 
sensorineural [1], and our muscular [2] system. These 
diseases are referred to as HAV- / Raynaud- / White Finger- 
Syndrome. Nowadays, there are regulations to protect 
workers, which demand to evaluate vibration exposure and 
to assess potential risks. For example: The German 
Vibration Occupational Safety and Health Regulation [9], 
which is similar to the European regulations [4], obliges the 
employer to abide with the limit of the daily dosage of A(8) 
= 5 m/s² and to establish a vibration reduction program 
when exceeding a daily dose of A(8) = 2.5 m/s². Tools that 
are currently used to assess HAV exposure durations and 
intensity are expensive, disturb the workflow or may be 
applied only sporadically or rarely due to the high costs. In 
contrast to a manual evaluation and proposed solutions in 
research [10,12], we set the goal to explore a more natural 
and unobtrusive way of logging, while not relying on 
fragile custom hardware prototypes. Therefore, we utilize a 
commercial and robust smartwatch, which incorporates a 
great variety of integrated sensors.  

We call our developed system: AGIS: Automated G-force 
vibration Interpretation on Smartwatches, which 
contributes an unobtrusive wearable system that enables a:  

• Determination of the current tool being used based on the 
data of the integrated microphone and accelerometer, 

• Estimation of the HAV exposure doses in respect to the 
legal regulations. 
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RELATED WORK 
The most recent report of the Institute for Occupational 
Safety and Health of the German Social Accident Insurance 
[8] has shown that many workers who are exposed to 
significant HAV do not keep track of vibration exposure or 
just apply simple methods, such as using a stop watch. 
However, the actual exposure time is not being measured, 
but estimated based on the mean production time and 
personal experiences. Such subjective estimation is 
inaccurate, since the guessed time of use is often much 
lower than the actual HAV exposure doses [8]. 

In other research, we can find several solutions to overcome 
the problem of tracking the tool being used, such as by 
using radio transmitters. RFID tags are being attached to the 
tools and read out by a wrist-worn RFID reader [5]. In this 
setup, we can identify the tool and calculate the duration it 
is held. However, we do not know whether the tool is 
indeed switched on. Therefore, the duration of exposure can 
only be roughly estimated. Similar recognition systems with 
other technologies include NFC [7], WiFi [13], or 
Bluetooth [3], all of which yield the same drawbacks. 

Moreover, distinguishing tools based on their execution 
style has been proposed in 2004 by Lukowicz et al. [11] and 
in 2006 by Ward et al. [12]. While they attach a loose 
microphone and an accelerometer to the user’s arm, almost 
ten different tools have been demonstrated to be detectable 
with an accuracy of >90% based on a user-dependent 
classification. Although such types of sensors look 
promising for a tool detection, they remain bulky 
prototypes which are not applicable in a real shop floor. 

A very recent project, EM-Sense [10], represents a more 
advanced approach that utilizes an Electromagnetic Field 
Sensing in order to demonstrate the recognition of a unique 
signature that is created when the device is worn and 
actually switched on. This way, a tool identification and the 
exact duration of use can be determined. On the other hand, 
we require a customized smartwatch, which is bulky and 
prone to break. None of these afore mentioned projects are 
applicable in real scenarios, as none of them demonstrated 
an implicit way of determining vibration exposure doses, 
which is however the aim of AGIS. 

IMPLEMENTATION 
We implemented the AGIS system on a SimValley AW 
429RX, which is an autarkic Android 4.2 smartwatch and 
thus fully independent, since it is not being required to rely 
on a smartphone such as Android Wear Devices. We 
utilized the integrated microphone, which provides 8kHz 
with 90.31db, and the integrated Bosch BMC050 12bit 
accelerometer. On the watch, we process and visualize the 
data. In addition, important information, such as a tool 
change, is being synchronized with a web server via the 
HSPA internet connection as well. The watch-face provides 
a visual representation – a circle graph – of the calculated 
HAV doses in respect to the daily limit (5.0m/s2) imposed 
by legal regulations [9]. 
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Figure 2. The AGIS Android app running on an autarkic 

smartwatch (SimValley AW 429 RX). 

Sensor Quality  
A precise determination of HAV requires high quality 
sensors, since some tools emit high amplitude- and high 
frequency- vibrations. Ascertaining the correct magnitude 
requires applying a high g-force sensor, which is capable of 
providing sampling rates up to 1000Hz. Unfortunately, 
these professional sensor solutions are expensive, bulky, 
barely mobile, and not comfortable to use. 

In contrast, accelerometers or gyroscopes implemented in 
smartwatches show a lower quality. Usually only g-forces 
up to 8g and low sample rates such as 50Hz are being 
supported, such as in our case for the SimValley AW 429 
RX. Following the Nyquist-Shannon-Theorem, we can 
therefore only recognize vibrations up to 25Hz, which is 
insufficient for tools such as a grinder that is running at 
150rpm. These constrains disable us to provide an accurate 
calculation of actual HAV intensity. 

HAV Exposure doses 
To deal with the poor sensor quality, we developed a 
methodology that circumvents the hardware limitations and 
thus still enables us to determine the daily HAV exposure 
doses. Our solution relies on a calculation based on the 
HAV intensity ratio reported in the datasheet for each tool. 
Therefore, we now only need to correctly identify the tool 
that is being used and to create a database containing all 
tool specific HAV intensity ratios. 

(i) Once the tool is known to the system, we can easily 
calculate the daily doses based on the HAV intensity ratio 
from the datasheet (ahv in m/s2), the duration the worker is 
exposed to the vibration (Texp in hours), and the daily limit 
of working hours (T0 in hours).  

A(8) = Ta  hv
exp

T0  
A(8) describes the daily HAV exposure doses, which is 
consequently also specified in m/s2.  

(ii) When using multiple tools during the day, we have to 
sum the HAV exposure periods An(8) in this manner: 

A(8) = √ 1 ( 8) +  2 ( 8) + 3 ( 8) + 4 ( 8) + ...2 2 2 2
 



(iii) Given a situation in which a tool cannot be detected or 
the datasheet is unknown to the system, AGIS will estimate 
the HAV intensity ratio (ahv) based on the maximum 
amplitude of each axis as follows: 

a   = √ + +hv ahvx
2 ahvy

2 ahvz
2

 
Note: In order to only receive the vibration intensity, we 
apply a high-pass filter to remove all arm/hand motions. 

Tool detection 
Similar to previous research [12], we are also utilizing 
sound (Microphone), and vibration and movement 
sequences (Accelerometer) for a tool detection. 

As a first step, we only query the integrated smartwatch 
microphone with 8kHz, which enables to sense sounds up 
to a range of 4kHz. After creating a Fast Fourier 
Transformation (FFT) on the unfiltered audio signal, we 
can already see substantial differences which allow to 
identify the tool being used based on the predominant 
frequencies. With this sole feature, we could demonstrate a 
flawless detection (of >90% in a lab study with 3 
participants and 10 trails for each tool) of 4 different tools, 
which are: a) Hammer Drill, b) Jigsaw, c) Drilling Machine, 
and a manual d) Hammer – see Figure 1. 

Also in accordance with literature, distinguishing tools 
which emit similar sounds and which show no diversity in 
physical execution style, remains to be difficult. For a 
possible solution, we require to further enrich our data set 
with accelerometer data in order to determine unique 
vibration patterns. With this new setup, we compute 71 
features (most commonly known in literature) on both the 
audio and the acceleration data. We have chosen a robust 
and energy-efficient classifier, a J48 decision tree, which 
then ranks and selects the most meaningful attributes, 
which are usually about 9-15. Even though plenty of 
features correlate, the most meaningful ones include: Mean, 
squared Mean, Mean Crossings, Root Mean Square, 
Median, Variance, Standard Deviation, Dominant 
Emphasis Frequency, Max. Amplitude Frequency, Signal 
Energy, Zero Crossings, Activity Units... 

With this approach, we are now enabled to also train 
several other activities to the AGIS system (see web 
interface in Figure 3). It has been shown that an increased 
set of learned activities and tools decrease overall accuracy 
of the system. 

Figure 3. An online platform allows to display the performed 
activities and tools being used. 

IN SITU PILOT STUDY 
We evaluated the practicality of our solution through a 
detailed in situ pilot study. Our goal was to observe an 
actual worker using our system and to learn more about 
what it is like to use it in a real shop floor. Aside from that, 
we collected data to further evaluate the recognition rates. 

Study Setup 
In a metal workshop, we equipped a worker with three 
apparatuses, which were the smartwatch running AGIS, a 
GoPro Camera, and an external noise sensor system to 
gather ground truth data. Before running the actual test, the 
user had to conduct a 2-5 minute training phase, in which 
the system learned four similar grinding tools (see Figure 
4). In addition, a resting / “no grinding”-phase has been 
trained, which was however impure since the worker was 
doing random other things such as running around in a very 
noisy shop floor. The worker was not instructed to perform 
a specific task, but instead to just continue his usual daily 
work, which basically included grinding metal parts. 

a b

c d
 

Figure 4. In our pilot study, the worker trained four similar 
grinders, which were: a) angle grinder Hilti, b) angle grinder 

Milwaukee, c) pneumatic grinder, d) wobble disc grinder. The  
AGIS smartwatch system was then distinguishing those and 

estimating the daily HAV doses. 

Results 
During the period usage, which was about an hour, our 
system created 2784 instances using a non-overlapping 
window approach (1.28 seconds per window). 

As we can also notice in Table 1, the wobble disc grinder 
has not been used. However, the AGIS smartwatch system 
sometimes misclassified other grinders (especially the 
pneumatic grinder) to be the wobble disc grinder (with a 
confidence of 34%). That is why the pneumatic grinder 
only scores 42.2% instead of 75% TP. The generally quite 
low accuracy is due to several factors, such as: 

• The grinders have been used with various other grinding 
discs, which were not learned by the system beforehand 

• Emitted random noise from other tools from neighbor 
works turned some audio features ambiguous. 

According to the observation by the video/sound analysis, 
the AGIS smartwatch system overestimated the HAV 
exposure by A(8) = 0.2m/s2, which is around 11%. 



Table 1. Comparing AGIS to the ground truth in terms of 
HAV Exposure doses and Tool Identification 

Based on our observations and on the worker’s comments 
(»…executed my tasks in a usual speed […] at some point, I 
even forgot that I was being tracked.«), we can state that 
the AGIS smartwatch system did not hinder the worker 
performing his daily work tasks in any way. This important 
factor is often not considered in other research projects. 
»… most time of the day […] I’m using grinders, but I 
never track the time [of usage]. […] make up a number at 
the end of the day, I can write in the sheet before leaving.« 
In contrast, AGIS never requires the worker for any 
administration. Instead, AGIS automatically tracks the time 
of the tool in use and calculates the daily HAV dose. Still, 
additional tweaking and a broader training phase would 
further improve the quite high deviation of 11%. 

What we can also learn from this in situ study is, that in a 
real shop floor environment unanticipated events, such as 
background noise, unforeseen movements, etc., always 
occur (during both: training and testing phase). This 
apparently had a huge negative impact on our accuracy 
rates. Previous researchers were able to report much higher 
rates, because (1) they did not deal with these issues in 
laboratory conditions and (2) they usually only focused on 
distinguishing very dissimilar tools. In contrast, our study is 
carried out in a real shop floor, while we were trying to 
distinguish between four similar tools (grinders) that 
somehow yield same executions styles, similar vibration 
patterns, and similar sound emissions. Still, if not 
considering the pneumatic grinder, we already achieve an 
overall accuracy rate of 85%, which would be sufficient in 
practice, since their HAV ratios are actually quite similar. 

CONCLUSION 
In this research, we investigated the technical feasibility of 
a smartwatch system to determine an estimation of daily 
HAV exposure doses by the means of a tool detection that 
is based on the emitted vibration and sound. Even though 
we could implement a mobile smartwatch system, we still 
see this project as a proof-of-concept. Applying AGIS in a 
usual workday would still require broader user tests and 

additional tweaking to reliably distinguish similar tools. In 
future, we envision smartwatches to play a critical role for a 
workshop-based monitoring, which potentially supports the 
reduction of stress and administrative pressure on workers. 
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17:10 14:38 2:32 79.6 2.9 2.47  a) angle grinder Hilti 

08:25 05:25 03:00 83.5 1.12 0.72  b) angle grinder Milwaukee 

08:09 13:03 -04.54 42.2 0.17 0.28  c) pneumatic grinder 

03:04 00:00 03:04 - 0.08 0  d) wobble disc grinder 

22:34 26:17 -03:43 82.1 0 0  no grinding 

  Total HAV Exposure A(8) 2.1 1.9  


