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ABSTRACT
It is a common problem that images captured underwater (UW) are corrupted by noise. This is due to the light
absorption and scattering by the marine environment; therefore, the visibility distance is limited up to few meters.
Despite blur, haze, low contrast, non-uniform lightening and color cast which occasionally are termed noise,
additive noises, such as sensor noise, are the center of attention of denoising algorithms. However, visibility of
UW scenes is distorted by another source termed marine snow. This signal not only distorts the scene visibility
by its presence but also disturbs the performance of advanced image processing algorithms such as segmentation,
classification or detection. In this article, we propose a new method that removes marine snow from successive
frames of videos recorded UW. This method utilizes the characteristics of such a phenomenon and detects it in
each frame. In the meanwhile, using a background modeling algorithm, a reference image is obtained. Employing
this image as a training data, we learn some prior information of the scene and finally, using these priors together
with an inpainting algorithm, marine snow is eliminated by restoring the scene behind the particles.

Keywords
Underwater Image Processing, Marine Snow, Background Model, Inpainting

1 INTRODUCTION
The growing interest in UW image processing lies in
the poor performance of devices used to capture UW
scenes. The major barrier is that light, unlike sound,
is poorly propagated in water. This is explained by
the propagation properties of light in water ([McG80,
Wel69]). Light is exponentially attenuated while trav-
eling in water. This is caused by two factors: light ab-
sorption and scattering, which leads to poor contrast,
haze, blur and color cast.

• Light absorption reduces the light energy; therefore,
colors drop one by one based on their wavelength
(color cast). One can augment the visibility range
by using artificial lightening; however,

• water reflects a significant fraction of light back to
the camera before it even reaches the object in the
scene. This so-called backscattering yields degraded
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contrast scene and a foggy appearance. Further-
more,

• a fraction of light reflects from the object to the cam-
era with a small angle (forward scattering) which
generally leads to a blurry image. Finally,

• organic and inorganic floating particles in water dis-
tort the scene visibility as an unwanted signal and
are considered as noise, although, they belong to the
scene.

As a result, visibility UW is limited at a distance of
about twenty meters in clear water and five meters or
less in turbid water [ABMK05b]. Naming distortions
for UW imaging, the one which is not well-researched
and mostly neglected from image processing algo-
rithms, is the presence of floating particles. Although,
in orders of magnitude these particles together with
Backscatter have the greatest degradation factor
[ABMK05b].
Marine snow is the term which is used for the macro-
scopic aggregates of detritus, dead material and dis-
solved organic matter floating in water. According to
the properties of light propagation in water, smaller
particles scatter the light more, thus, marine snow is
one of the main sources of scattering (more specifi-
cally backscatter). Light reflection on marine snow cre-
ates white bright spots that lead to an inhomogeneous
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Figure 1: Illustration of physical characteristics of ma-
rine snow in acquired data. (a) particles with different
sizes (3× 3 to 20× 20, (b) geometry of particles, (c)
particles are present in different camera-scene depths
(contrary to additive noise) and (d) strong light reflec-
tion of particles due to using artificial illumination.

medium [BG12]. Not only scattering and absorption
are increased due to this phenomenon, but also it may
appear dominant enough to reduce the scene percep-
tion (some examples are shown in Figure 1 (c) and (d)).
Due to all the difficulties caused by marine snow, in this
work, it is considered and treated as noise.

In this paper, we consider a novel approach to remov-
ing marine snow from frames of a video where the
camera is assumed to be static. The information pro-
vided by the video sequence is used to eliminate marine
snow from each individual frame. Our algorithms has
three main steps, first, we employ our previously pro-
posed background modeling algorithm [RG15] (which
is based on the well-known Gaussian background mod-
eling approach) and obtain an accurate model of the
static components of the video. This model gives us
the information about the background which is covered
with the marine snow. Second, we detect the corrupted
pixels based on our detection algorithm [FRvL17] and
extract a mask which indicates the location of marine
snow. Next, using the background model as a train-
ing data, some prior information about the scene are
learned [RB05]. Finally, we employed the trained pri-
ors and the inpainting algorithm proposed by Roth and
Black [RB05] together with the extracted mask, and
eliminate marine snow by restoring the scene behind
it with the most related prior information. Experiments
show promising results where marine snow is almost
completely removed and even small details are pre-
served.

The rest of this paper is structured as follows: in Section
2, we present a summary of the related works. Section
3 introduces marine snow and provides a short sum-
mary of its characteristics. Section 4.1 contains the
explanation of background modeling method used to
provide the training data [RG15]. In Section 4.2, we
explain how to extract an accurate mask containing ma-
rine snow locations from a single frame. And at last, the
inpainting algorithm in [RB05] is detailed in Section
4.3. Evaluation of the algorithm is provided in Section
5.

2 RELATED WORK
The popular approaches towards denoising consist of
filtering [ABMK05a, LNHL15], wavelet decomposi-
tion and high-pass filtering [SZW11, PK10], a combi-
nation of curvelet and filtering [SSS13]. These methods
assume that every kind of present noise including ma-
rine snow can be defined as one of the additive noises.
Thus, salt & pepper, Gaussian and speckle noise are
considered and with this assumption, authors provide a
solution.

However, considering marine snow as an unwanted
signal in UW images, these algorithms can not ad-
dress eliminating of this phenomenon. This is due to
their main assumptions (additive and single pixel noise)
which do not match marine snow’s characteristics. Ma-
rine snow is an object in the scene and has a structure of
several pixels and covers the scene. Usually, these par-
ticles do not carry interesting information of the scene
and therefore, are disturbing for image processing algo-
rithms.

Banerjee et al. [BSG+14] proposed a probabilistic ap-
proach using median filtering to eliminate this phe-
nomenon from single images. This approach checks
the probability of the existence of marine snow in each
patch. This is done by looking for high luminance pix-
els in a patch using a predefined threshold and calculat-
ing its probability as follows:

P(MS) = 1− NHL

N
(1)

where NHL and N stand for the number of high lumi-
nance pixels and the total number of pixels in the cur-
rent patch respectively. They consider a cross-checking
to avoid misclassification of the true objects as marine
snow. To this end, keeping the same center pixel, they
increased the patch size by 2 (in both directions) and
calculate the probability one more time. If the prob-
ability of having marine snow in the resized patch is
still high (low number of high luminance pixels) then
the center pixel is replaced by the median value of the
local patch. The logic behind this is that they assume
marine snow to have a structure of two or three pixels;



Figure 2: Comparison of different update schemes for the background modeling. In the top row are the first and
2000th frames of the Town Center Video. Second and the third rows correpond to the background models for
the 2000th frame created with different updating mechanisms: the partial updating, a complete update, and GSM
respectively.

therefore, if the probability of high luminance pixels in-
creased it means that it is a bigger object which can not
be marine snow.

However, this assumption does not hold always since
usually marine snow, depending on the image resolu-
tion, have bigger structures (in our case it reaches to
20×20 pixels). Thus, considering it to have sizes big-
ger than three pixels, this criterion cannot differentiate
between marine snow and other objects in the image.
Increasing the patch size to take into account bigger
sizes of marine snow may lead to a significantly blurred
image. Moreover, this method does not use all the in-
formation provided in an image since it only considered
gray scale image which could result in false detection of
similar structures with different colors.

3 MARINE SNOW AND ITS CHARAC-
TERISTICS

Decaying dead material and dissolved organic matter in
water is referred to as marine snow since it is white and
looks like snowflakes falling. These particles grow as
they fall, some reaching several centimeters in diame-
ter, this is due to aggregation of smaller particles. Thus,
in an image, marine snow appears as white bright spots
of different sizes and geometries randomly distributed
in the image (Figure 1).

In view of Figure 1 (provided as an example), we could
observe some physical characteristics of marine snow
in captured images:

• it appears in different sizes depending on the image
resolution. Usually between 3×3 to 20×20 pixels
(Figure 1(a)).

• it can be roughly estimated as a Gaussian distribu-
tion in all directions, a high peak in the middle and

lower intensities elsewhere proportional to the dis-
tance to the peak’s location (Figure 1(b)).

• in contrary to additive noise, marine snow is present
in all layers of a scene (considering the depth map
of a scene consists of several layers) and can have a
highly overlapped and non-uniform distribution over
the image (Figure 1(c)).

• the most challenging fact about this phenomenon is
that in the case of using an artificial light at the time
of photography, it scatters the light to the camera and
appears as circle shaped reflection (Figure 1(d)).

4 PROPOSED APPROACH
Having a video of reasonable length, we divide it into
two parts. The first ∼ 500 frames are used for training
and the rest for testing. Although, the number of frames
used for training can vary e.g. in the case of video in
Figure 7 which is short (only 150 frames), we duplicate
the training set by mirroring the order of training frames
and conduct a bigger training set. The training frames
are then used to learn a background model using Gaus-
sian background modeling [RG15] (Section 4.1). Next,
for each test frame, a mask containing marine snow lo-
cations is derived. The details of mask extraction are
provided in Section 4.2. Once the background model of
the scene and the mask corresponding to each test frame
is available, the inpainting algorithm [RB05] is trained
over the background model and recovers the scene be-
hind marine snow using the corresponding mask (Sec-
tion 4.3).

4.1 Gaussian Switch Model
It is a common practice to use a Gaussian distribution to
model the color information of frame pixels in a video



sequence and extract one image which only contains the
background. For this purpose, one can use the Mixture
of Gaussian models [SG99, WBSP14], however, they
are not ideal due to difficulty at unifying the different
Gaussian distributions again. On the other hand, single
Gaussian [WADP97] approaches lack accuracy. Thus,
to keep the balance between accuracy and complexity,
we use our Gaussian Switch Model (GSM) proposed in
[RG15].

The idea behind this algorithm comes from the short-
coming of a single Gaussian approach which includes
the information from foreground objects into the back-
ground model and corrupts it. Especially when there is
a constant presence of many foreground objects. This
can be solved by applying a partial update, this means
that instead of updating the whole model, only the pix-
els that are classified as background are updated. Ide-
ally, now only background information is included into
the model which should lead to a more robust and pre-
cise model. For this, the segmentation of the current
frame is computed by background subtraction before
the model is updated with the information from this new
frame. Then the segmentation can be used to update the
background pixels and exclude foreground objects. In
general, this improves the segmentation and stabilizes
the model, but since the model is used to improve its up-
dating process itself, a kind of self-fulfilling prophecy
can occur.

An example of this is the presence of a foreground ob-
ject in the initialization. This foreground object is a
part of the model in the beginning and should slowly be
overwritten with the background information during the
updating process. However, when partial updating is
applied, this usually does not happen because the actual
background in that area will be marked as foreground;
therefore, it does not get included into the model.

To still get the benefits from the partial updating with-
out facing these problems, the GSM uses two Gaussians
to model the background. The first Gaussian is par-
tially updated and is taken as the background model and
the second Gaussian is fully updated with every frame.
The errors of the partially updated model can be dis-
covered by a comparison between these two Gaussians
since they always show the same characteristics:

• the means of the two Gaussians slowly diverge from
each other as the Gaussian with the full update
adapts to the new background and the other stays
constant.

• for many successive frames a foreground object is
detected at the same position.

If these characteristics are true for a specific pixel, the
partial updated Gaussian for that pixel is overwritten
with the values of the full updated Gaussian as it does
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Figure 3: The pixels of current patch are visualized as
points in RGB color space. The pink sphere demon-
strates the search environment for the density calcula-
tion.

not reflect the true background anymore. The represent
version of the background model can then be simply
extracted by taking the mean of the partially updated
model for each pixel and color channel.
An example of the background modeling with the GSM
compared to the partial and full update approaches can
be seen in Figure 2 (the mean values of the Gaussians
are displayed) where it is compared to the full and par-
tial updating schemes on a video with many foreground
objects. The parameters of the modeling are the same
for all three methods and it can be seen that the com-
plete update created a model which is very corrupted
with the current foreground objects of the scene. The
partial update eliminates this problem but many objects
from the first frame can still be seen in the model there
as they never get eliminated. The GSM can combine
the advantages of both methods and can create an al-
most uncorrupted background model.

4.2 Mask Extraction
Knowing how marine snow appears in an image, we ap-
plied a detection algorithm to extract a mask indicating
corrupted pixels in the image. This is done by looking
for the pixels with the same characteristics as marine
snow within the patches of an image. First, a rough de-
tection of corrupted pixels is obtained and then, a voting
algorithm conducts the final detection.
Marine snow is more visible and disturbing when the
background is darker (lower intensity), although the
particles are presented everywhere but they decrease
the visibility of the scene especially when there is a
higher contrast to the background. Thus, generally, the
light reflection on the small particles are represented as
bright spots in an image.
Thereby, the intensity of pixels within a patch is
checked and a sudden high-intensity occurrence is
marked as potential marine snow. A candidate pixel p
has to satisfy the following inequality:

‖p−µ(Ω)‖2
2 >W1 ·σ(Ω) p ∈Ω, (2)



here W1 is an empirical weight, σ(Ω) is the standard
deviation, and µ(Ω) denotes the mean value of the local
patch Ω. W1 is defined heuristically and is affected by
the image resolution, in our case where the data has a
resolution about 850×478, W1 = 1.7 is the best choice.
Next, we look for general outliers within the candi-
date pixels from the last step. This is done to dis-
tinguish between a high-intensity outlier and a high-
intensity object’s edge. For this, the idea of Gutzeit et
al. [GOK+10] is employed. The RGB color space is
considered as Euclidean space. The pixels within the
current patch are then represented in this space and the
density surrounding each candidate pixel is calculated.
Figure 3 demonstrates this process. A sphere covering
an area surrounding each high-intensity pixel defined in
the last step is explored.
The number of pixels within this sphere

#{v ∈Ω | ∃p ∈Ω : ‖p− v‖2
2 < σ(Ω)}, (3)

together with the volume of the sphere and the overall
number of pixels in the patch gives us the density. Here
v and p are pixels in the local patch where p 6= v, and
σ(Ω) is the standard deviation. The radius of the sphere
is defined dynamically based on the weighted standard
deviation of Ω to make the approach adaptive.
Another observation can be derived from marine snow
characteristics: it mostly appears having high intensity
and low saturation. Thus, by applying the following
inequality the pixels with high saturation are discarded:

|pc− pl |< T ∀c, l ∈ {R,G,B} ∧ c 6= l. (4)

Thereby, the candidate pixels are limited to have col-
ors close to white by using a predefined threshold T
(e.g. T = 2). All the pixel values that satisfy the afore-
mentioned conditions are then discarded and the me-
dian value of the remaining pixel values within the lo-
cal patch Ω is calculated. For now, all the eliminated
values in this patch are replaced by this median value.
The filtering is done in a copy version of the original
image. This procedure, initial filtering, is repeated for
the whole image.
The patches are extracted highly overlapped; this means
each pixel can be in n×n possible patches except for the
pixels at the border of the image with fewer possibilities
(n×n is the patch size). Therefore, each pixel of the im-
age could have been filtered in different patches accord-
ingly, which results in having several filtered versions
for a single pixel. The final decision about each pixel
is then made by using a voting algorithm. If the major-
ity of the filtered versions correspond to each pixel in
the original frame indicate that it contains marine snow
then, the location of that pixel is marked as noisy in
a mask image. A mask image is a matrix, the same
size as the original frame, whose pixel values are bi-
nary (one indicating marine snow and zero elsewhere).

Figure 4: marine snow detection shows overlapping
patches for marine snow (left) versus an object edge
(right).

Figure 4 illustrates the condition with an example. This
is applied on Laplacian pyramid of the image to detect
marine snow with different sizes.
Once the final mask indicating marine snow locations
is acquired, it is used to recover the denoised image
using inpainting. At the end of this stage, we already
can remove marine snow using filtering detected pix-
els. However, the results may suffer from smoothing
the edges. In addition, in locations where the intensity
of the image pixels varies (not only at the edges of the
objects but also for example where color shades of a
fish changes), the filtering can result in a wrong pixel
value. An example of this situation is illustrated in the
zoom-in presentation in Figure 6.
Thus, to improve the results, instead of filtering the im-
age directly, we apply an inpainting algorithm which
learns the most relevant priors to the test image by train-
ing over the background model of the same scene and
restore the image accordingly.

4.3 Inpainting
Image inpainting is a useful application in several sce-
narios of image processing. It is used to fill in pixels
which are missing in an image. Examples of inpainting
in image manipulation include the removal of scratches
on a photograph, unwanted occluding objects, super-
posed text, road-signs or publicity logos [ESQD05].
Generally, inpainting uses the information provided by
the neighbors to fill in the missing pixels. However,
whenever there is noise or any uncertainty, prior mod-
els of images such as depth maps, flow fields, etc. come
into play. In our case where an object is considered
as noise, prior information about the scene is advanta-
geous. Therefore, we employ the inpainting algorithm
proposed by Roth and Black [RB05]. This algorithm
uses Field of Experts (FoE) to learn image priors from
external data. We employ this algorithm rather than tra-
ditional inpainting algorithms so if the detection could
not extract the particles precisely, the restoration will
not be highly affected due to using direct neighbor-
hoods.
FoE employs both sparse coding and Markov Random
Field (MRF) to learn rich, generic prior models of any



class of images. Sparse coding provides an elegant and
powerful way of learning prior distributions on small
image patches. However, the result does not general-
ize to give a prior model for the whole image. This is
where MRF provides not very rich but general prior in-
formation of the whole image.
The key idea behind FoE [RB05] is to extend MRF by
modeling the local field potentials with learned bases.
These bases capture important structural properties of
images, respond to various edge and texture features.
For this, they used the idea of the Product of Experts
(PoE) framework [Hin02] and trained a model on a data
set and develop a diffusion-like scheme that exploits the
prior for approximate Bayesian inference.
For more insight, consider the pixels in an image be
presented by nodes V in a graph G = (V,E), where E
stands for the edges connecting nodes. A rectangle re-
gion of m×m neighborhood connecting all nodes is de-
fined, where every such neighborhood is centered on a
node (pixel). The probability density of such a graphi-
cal model is defined as a Gibbs distribution:

p(x) =
1
Z

exp(−∑k Vk(xk)) (5)

here x stands for an image and Vk(xk) is the potential
function for clique xk. They further assumed that the
MRF is homogeneous which leads to translation invari-
ance of MRF model. The potential Function V is then
learned using training images. And as a result, the prob-
ability density of a full image is obtained as follows:

p(x) =
1

Z(Θ) ∏
k

N

∏
i=1

Φi(JT
i xk;αi), (6)

where Z(Θ) is a normalizing function, Ji is a linear
filter, Φi the experts and N stands for the number of
experts. This model works for different image sizes,
enjoys translation invariant property which is desirable
for generic image priors and has few parameters which
need to be learned. The parameters αi and linear filters
Ji are learned from the training images by maximizing
its likelihood.
Once the parameters are learned, the inpainting algo-
rithm propagates information using only FoE prior and
refills the pixels iteratively by introducing an iteration
index t and an update rate η as follows:

x(t+1) = x(t)+ηM
N

∑
i=1

J−i ∗Ψi(Ji ∗ x(t)) (7)

let Ψi(y) = d
dy logΦi(y;αi), J−i denotes the filter ob-

tained by mirroring Ji around its center pixel [ZM97],
and ∗ stands for convolution.

5 EXPERIMENTAL RESULTS AND
DISCUSSIONS

We have performed our experiments on two different
scenes. One is taken at Ozeaneum Stralsund (Figure

6), and the other one is courtesy of GEOMAR which is
taken in the Black sea (Figure 7). For the first video
(Figure 6), the first 500 frames are used to train the
background model and the rest (50 frames) are added to
the testing set for evaluation of the algorithm. Second
video (Figure 7) is shorter; therefore, only 150 frames
are available for training (and 5 frames for testing). For
this video, we have duplicated the training frames to
expand the training set for a better result. The back-
ground models of both scenes are obtained using GSM
background modeling algorithm [RFvL16] (an exam-
ple: Figure 5). Once the background model is avail-
able, we applied [RB05] to learn the FoE priors. For
each frame in the testing set, we obtain a mask con-
taining marine snow locations by applying the method
explained in section 4.2. Finally, using the inpainting
algorithm and mask together with the priors, the scene
behind marine snow is recovered.

To quantitatively evaluate our algorithm, we need
ground truth data which is not available in our case.
Therefore, we have provided simulated frames. To this
end, one simple approach would be to generate a salt
and pepper noise on the image. However, as it was
discussed before, this model does not take into account
various physical parameters such as the effect of water
absorption and scattering on the signal backscattered
by the particles, the size, and shape of the particles
or the defocus effect. Boffety and Galland [BG12]
consider most of these properties and proposed a
method to model this phenomenon by assuming that
these particles behave like white Lambertian scatters.
However, it still does not cover different geometries of
marine snow and gives an artificial look to the image.

Thus, we have employed a different strategy. First, ma-
rine snow is extracted from the a test frame of each
scene. This is done by human experts where the parti-
cles are manually extracted with pixel accuracy. Then,
we have restored the scene behind marine snow with
information of the neighborhood pixels and frames and
conduct a ground-truth image. Once this image is avail-
able, we have placed the extracted marine snow ran-
domly in the frame. This simulated image together with
the ground truth image is then used to evaluate the per-
formance of our proposed method. This way, we obtain
a simulated data with a very natural look where marine
snow has the most accurate model and is highly corre-
lated to the real frames.

Our result is compared to the method in [BSG+14], the
result by directly filtering marine snow using the ex-
tracted mask (explained at the end of Section 4.2), our
proposed algorithm when inpainting is trained on an
arbitrary training set of the same class (UW images),
and finally our proposed algorithm when inpainting is
trained using the background model. Comparison is
done via PSNR and MSE calculation (Table 1).



Figure 5: Results of the GSM background modeling on an UW video. On the left is the original frame of the video
and on the right the background model is depicted.

In view of Table 1, one notices that filtering marine
snow using the extracted mask has already succeeded
by about 4 and 6.3 dB improvement on the results of
[BSG+14] for simulated images of scene 1 and 2 re-
spectively. The advantage of using inpainting algorithm
together with the extracted mask has been proved by
achieving further improvement of 1.2 and 3.4 dB re-
spectively. It can be seen that training data for the in-
painting algorithm plays an effective role, where the re-
sult of the proposed algorithm differs when the training
data changes. When the training data has a high corre-
lation with the input image, the algorithm can achieve
about 0.2 dB and 0.5 dB improvement, for the first and
the second scene respectively, compared to the situation
where a set of arbitrary images of the same class (UW
images) are used.

Figures 6 and 7 illustrate the qualitative results cor-
responding to the table 1. The improvement over
[BSG+14] is clear, where the edges are smoothed
and marine snow is not removed completely. Filter-
ing the image using the extracted mask has already
succeeded to remove marine snow effectively without
smoothing the edges too much. However, a closer
look demonstrates the shortcoming of this approach.
It fails at removing marine snow correctly where it
lies on the edges of objects or where there is no edge
but the intensity values change (e.g. color shades of a
fish). It happens due to the fact that median value of
different candidate patches may not exactly match the
true value. An example can be seen in the zoom-in
presentation of Figure 6. In these situations, inpainting
provides smoother results because it does not use the
neighborhood pixels directly but the learned priors of
the whole scene.

6 CONCLUSION
In this paper, we have proposed an algorithm to elim-
inate marine snow from UW videos where the camera
is static. The approach has three main steps; first, our
background modeling algorithm [RG15] has been em-
ployed to extract an accurate model of the static com-
ponents of a video. Second, we have detected marine

PSNR Values
Approach Scene 1 Scene 2
[BSG+14] 43.6504 37.4235

Mask + Filtering Only 47.4818 43.7806
P. A. without BG model 48.6403 47.1723
P. A. with BG model 48.8275 47.6833

MSE Values
[BSG+14] 1.6750 3.4306

Mask + Filtering Only 1.0776 1.6501
P. A. without BG model 0.9430 1.1167
P. A. with BG model 0.9229 1.0529
Table 1: Evaluation using PSNR and MSE values.

particles in each individual test frame and a mask con-
taining marine snow locations is derived. Finally, the
background model is used as training data for an in-
painting algorithm to extract the generic distribution of
the scene which is then used together with the mask to
restore the information behind the marine snow.

The results have illustrated the success of the proposed
algorithm at eliminating marine snow. Simple filtering
using the extracted mask has shown superior to the re-
sults of [BSG+14] both quantitatively and qualitatively.
In addition, employing inpainting has enhanced the re-
sults by restoring the image more accurately.

However, there is still space for improvement espe-
cially in extracting the mask. If the mask is not accu-
rate enough to cover marine snow completely, inpaining
may rebuild it back. Furthermore, when marine snow
lies at the edge of two regions with low and high lumi-
nance, the algorithm may not be able to detect it. This
is due to our first assumption that a sudden high lumi-
nance occurrence in a patch is a candidate to be marine
snow.
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Figure 6: Results of marine snow removal for a frame of the first video. From top to bottom and left to right: input
corrupted image, result of [BSG+14], result of filtering using the proposed mask and final result of the proposed
algorithm. Marked areas illustrate the improvement of the proposed method on previous work.

Figure 7: Results of marine snow removal for a simulated frame of the second video. From left to right and top to
bottom: input corrupted image, result of [BSG+14], result of filtering using the proposed mask and final result of
the proposed algorithm. The marked areas show some examples of [BSG+14] failure which are improved using
the proposed method. Full video of this scene is courtesy of JAGO-Team, GEOMAR Kiel, Germany.
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