
Optimization of Tasks Scheduling in Cooperative
Robotics Manufacturing via Johnson’s Algorithm

Case-Study: One Collaborative Robot in Cooperation with Two Workers

Ahmed R. Sadik
Fraunhofer Institute for Computer Graphics and Research

University of Rostock
Rostock, Germany

ahmed.sadik@igd-r.fraunhofer.de

Andrei Taramov
Fraunhofer Institute for Computer Graphics and Research

University of Rostock
Rostock, Germany

andrei.taramov@uni-rostock.de
Bodo Urban

Fraunhofer Institute for Computer Graphics and Research
University of Rostock

Rostock, Germany
bodo.urban@igd-r.fraunhofer.de

Abstract— The rapid development of information technology
in the last half century led to the emergence of a new industrial
revolution, often called Industry 4.0, the key element of which is
the introduction of informatization in all spheres of human life
and the widespread use of cyberphysical systems. The main
attribute of such systems is the interaction of human and smart
machines, this approach allows achieving the greatest flexibility
and productivity simultaneously. The latest example of such
systems is the collaborative manufacturing system, where the
human worker cooperates in a close distance with a collaborative
robot (cobot) in a production scenario. This cooperation is
applicable when the final product requires a high degree of
customization that a worker can provide, while cooperation with
the cobot is greatly speeding up the productivity. In this context,
one of the actual problems is to schedule the cooperative tasks in
real time among the operational resources (i.e., the workers and
cobots). This problem can be reduced to a special case of the
flow-shop scheduling problem. The complexity of this problem
increases with increasing the number of cooperative operational
resources and the production steps. Undoubtedly, modern
production often involves several processing steps serviced by
several operational resources. Therefore, it is necessary to study
a complex cooperative manufacturing scenario. The simplest and
most understandable case scenario is the interaction of two
workers and one cobot in two stages production workcell. Thus,
in this paper we will consider the implementation of this case-
study using the available scheduling algorithms.

Keywords—Flow Shop Scheduling; Johnson's Rule;
Collaborative Robotics; Cyber-physical System; Holonic Control
Solution; Multi-agent System; Rule Management System.

I. INTRODUCTION

The combination of a human worker and the cobot within a
single production workcell represents a new manufacturing
approach that provides both flexibility and agility in modern
production [1]. Involvement of a human in production allows
to meet the requirements of manufacturing products with a
high degree of customization, and also provides a quick and
resource-efficient response to the continuous changes in

production requirements, thus ensuring maximum flexibility of
production and adaptability to external conditions. The cobot,
on the other hand, can perform simple, often repetitive
operations in a much faster and more efficient manner [2].

The implementation of this technology promises to bring a
lot of advantages over classical production techniques, but also
proposed new problems [3]. One of such problems is planning
of the interaction between the worker and the cobot, which is
not an easy task, because the nature of their functioning is very
different from each other. Therefore, for successful
implementation of this type of system, it is necessary to
separate the tasks into production stages, distribute them
between the worker and the cobot and create an algorithm for
their interaction. The most common example of such
interaction is the cooperative assembly. In this process, the
cobot can be assigned to the pick and place function and/or
primary item processing, after which the product part is
delivered to the worker, where further assembly and
customization is carried out. This approach corresponds to the
scenario described above, clearly divides the production into
stages attached to the worker or the cobot [4].

However, distributing the tasks among the cooperative
resources in advance does not guarantee the optimal
performance of the entire system, in the absence of an
algorithm that optimize the scheduling of these cooperative
tasks. The lack of an optimum scheduling algorithm may result
the appearance of so-called bottlenecks and, as a consequence,
a general decrease in productivity. The mathematical aspect of
this problem has long been known in the scientific community
and is called the flow-shop problem. Thus, in the present paper,
a possible solution to the described problems will be presented
on a concrete case-study.

The paper is structured as follows. Section II describes the
problem at the hand, theoretical solution of which is presented
in Section III. Section IV presents software and architectural
basis which are needed for implementation. Section V contains
an implementation of the proposed solution. Section
VI summarizes the results of the current study.

2017 IEEE Conference on Systems, Process and Control (ICSPC 2017), 15–17 December 2017, Melaka, Malaysia

978-1-5386-0386-4/17/$31.00 ©2017 IEEE 36

II. THE PROBLEM IN DETAILS AND A CASE-STUDY

As mentioned above, the main problem in planning the
interaction between cooperative resources can be incorrect
assignments to certain cooperative task or job in the wrong
order. It is easy to demonstrate on a concrete example, the
simplest is two-stage production, where the cobot performs the
initial processing of the product or just pick and place
operation, and then the results of its work are sent to further
post-processing by the worker. At the worker stage, there are
two workers who work in parallel. The potential problem in
this case lies in the fact that the processing speed of these
modules may be uneven, which can lead to situations when the
job is idle, waiting for execution or when the performer is idle,
waiting for the job. The first situation occurs every time the
first production stage is running much faster than the second
one, releasing more jobs than the second can handle, which
causes the job to be idle, waiting for further processing. The
second situation occurs on the contrary, when the first stage
does not work fast enough to supply work to the second stage,
thereby forcing the latter to stand idle while waiting for job.
Furthermore, we should put into consideration as well the fact
that in the second stage the two parallel workers have different
assembly speeds, which creates additional threats of non-
optimal use due to incorrect distribution of work flows among
these workers.

The research case-study considers all the conditions
described above. The optimization of the current makespan, i.e.
the total processing time of the present jobs queue, is the main
problem the paper is answering. Implementation of this idea,
however, is much more complicated than its description, since
it requires a multistage approach to plan, as well as to monitor
the speed of each worker to predict its workload.

III. THEORETICAL BASIS OF THE SOLUTION.

A. Two-stage scheduling Problem. Introduction to the
Johnson's method
Makespan optimization of a sequential two-stage

production is a typical flow-shop problem, which can be
effectively solved by a simple and cost-effective approach
called Johnson's method [5]. This method, when applied under
the proper conditions, allows to minimize occurrence of both
situations of delay in work described in the previous section,
namely the worker is waiting for the job and the job is waiting
for the worker [6]. In order to understand the principle of the
Johnson's method, it is necessary to identify the causes and
possible variants of the occurrence of delays. To demonstrate
these variants, we introduce several terms - unscheduled job
(Ji), production stage 1 (PS1) and production stage 2 (PS2). For
each job, there is an execution time on PS1 (TJi@PS1) and PS2
(TJi@PS2).

Johnson's method assumes that there is a storage buffer
between the stages to accumulate the results of the cobot before
passing through PS2, thus allowing the production to continue
at PS1 without waiting for the completion of the job at PS2.
This circumstance makes the order of job execution at PS1
indifferent, since the makespan for this stage will always
remain constant. However, the overall makespan is calculated

by the completion time of the stage with the maximum
duration. In this case, it will always be stage two, because it
cannot be ahead of stage one. Thus, the optimal makespan at
PS1 does not guarantee the maximization of overall
productivity due to the presence of a second stage that can be
idle in case of insufficiently rapid provision of material from
PS1, thereby increasing the total production time. This makes
PS2 sensitive to the order of job scheduling. So, if jobs, which
require more time in PS1 than in PS2 (TJi@PS1 > TJi@PS2) are
scheduled at the beginning of the queue, this will cause a total
performance penalty of

(1)

Where n is the number of scheduled jobs with TJi@PS1 >
TJi@PS2. On the other hand, if we put jobs with TJi@PS1 <
TJi@PS2 in the beginning of the queue, then this will gradually
fill the buffer between the stages by an amount of

(2)

Where n is the number of scheduled jobs with TJi@PS1 <
TJi@PS2. The amount of work accumulated in the buffer
compensates for subsequent delays in the case of occurrence of
a job with TJi@PS1 > TJi@PS2, since the storage buffer
represents the finished jobs to be processed by PS2, thus
preventing its idle time. Thereby scheduling algorithms should
always strive to maximize the buffer before the emergence of
the job consumes it.

Also, the problem of the first stage should be considered.
Otherwise, the buffer will always be empty and the delay in
PS2 will increase, therefore this delay should be minimized by
choosing the job with the minimum T, however, a condition
such that TJ@PS1 <TJ@PS2 should be observed, otherwise an
additional delay will occur.

Considering all of the above, the following formula for
calculating the total production makespan in the case of
optimal planning can be derived:

 (3)

B. The use and evaluation of the Johnson's method
Input data of the method are presented in the form of an

initial list of jobs (L), which is an unsorted table, where the
execution time at each PS can be determined. At the output, the
algorithm should produce a list of scheduled jobs (L̓), with a
strictly defined order, where the first records mean early
execution, and the latter means later execution.

The flow chart of the Johnson's algorithm is shown on
Figure 1. The first step is to find the smallest time value from
all the input data in the initial list (L), regardless of the column.
If the minimum time found is related to the PS1, then the
corresponding work is placed on the first free space in the
scheduling list (L̓), otherwise it is placed on the last place of
the (L̓). Then the record is deleted from the initial list (L) and
the process is repeated until there are no jobs left in the initial
list (L).

2017 IEEE Conference on Systems, Process and Control (ICSPC 2017), 15–17 December 2017, Melaka, Malaysia

37

As a result of the algorithm, all the most rapidly executed jobs
over PS1 which the condition TJi@PS1 < TJi@PS2 is satisfied are
placed on top of the list L ҆ and, therefore, they are executed
first. While all the fastest jobs over PS2 which the condition
TJi@PS1 > TJi@PS2 is satisfied, moved to the end of the list L ҆
and are executed last. This will ensure, first, the minimum
initial waiting time for the PS2 due to the smallest possible
execution time of the first task on PS1, and secondly it
produces the fastest filling of the buffer due to the difference in
execution time (TJi@PS2 - TJi@PS1) in the initial jobs.

C. Distribution of Jobs Among the Workers
The previously described Johnson's method, as it was

explained, completely solves the scheduling problem over two-
stage production. However, the case-study under consideration,
namely the production on the basis of one cobot and two
workers is not completely reduced in the same manner. In our
case-study, we attempt to abstract and divide the current task
into two different subtasks, namely, the task of a two-stage
flow-shop and the task of distributing workers within a single
production stage. To solve the first problem, we presented two
existing workers as a single unit within the black box, which
made it possible to reduce the task to the required level of
complexity for the application of the corresponding algorithms.
The next step is to solve the second problem, considering what
happens in the black box with two workers. Obviously, the
assignment for the job in the queue depends primarily on the
current status of workers. In the case of two workers, the
following options are possible: both workers are free, then
select a worker who has done less to the moment. Worker-1 is
busy and Worker-2 is free or vice versa, then a free worker is
selected. Both workers are busy, then wait till one is free.

PS2 presents the workers stage, which is a dependent block
with a buffer. This means that the work on this stage is
performed asynchronously with the PS1 and the jobs can be
assigned regardless of whether PS2 is occupied or free. The
stage conditions are also applicable to the workers, i.e
assignment is possible even when both of them are busy, which
requires integrated approach to assess the current workload of a
worker based on the expected amount of work and the worker's
performance. Also, since the performance of the workers is
measured, it is possible to choose the most productive worker
instead of choosing worker who has done less.

Measuring the productivity of the worker, makes it possible
to roughly estimate the total amount of time that will be taken
to process the entire jobs list [7], in order to figure out which of

them will end earlier. However, given the likely emergence of
"borderline" results, which are characterized by a small-time
difference between the first worker and the second, the
projected time for performing the current work should also be
added to the total time. A comparison of the final processing
time results will give the final solution. The calculation of the
processing time is shown below on the Gantt chart in Figure 2.
In the case presented in the chart, the job will be given to the
worker-2, since his overall predicted time is shorter than that of
the worker-1.

IV. SOFTWARE AND ARCHITECTURAL BASIS FOR
IMPLEMENTATION.

Holonic Control Architecture (HCA) is a distributed control
and communication topology, which is used to solve a wide
range of problems, including the flexible and agile system
problem [8]. HCA implies the existence of special autonomous
cooperative blocks as its constituent elements, they are called
holons. Holon can transform, transport, store and validate
information and physical objects via two defined components
which are an interface and communication components.

HCA allows the use of diverse types of holons, distributing
production processes and responsibilities. Product-Resource-
Order-Staff-Architecture (PROSA) is the most common HCA
model. The PROSA basic holons are: Product Holon (PH),
which is responsible for processing and storing the different
production plans required to insure the correct manufacturing
of a certain product; Order Holon (OH) is responsible for
composing, managing the production orders, it also can assign
the tasks to the existing operating resources and monitor the
execution status of the assigned tasks; Operational Resource
Holon (ORH), which is a physical entity within the
manufacturing system, it can represent a robot, machine,
worker, etc.

The most common technology to apply the HCA concepts
is the autonomous artificial agent. Conceptually, an agent is a
computing machine which is given a specific problem to
solve [9]. It chooses certain set of actions and formulates the
proper plans to accomplish the assigned task. The set of actions
which are available to be performed by the agent are called a
behavior. The agent behaviors are mainly created by the agent
programmer. An agent can execute one or more behavior to
reach its target. The selection of an execution behavior among
others would be based on a certain criterion which has been
defined by the agent programmer.

A Multi-Agent System (MAS) is a collective system
composed of a group of artificial agents, teaming together in a
flexible distributed topology, to solve a problem beyond the
capabilities of a single agent. JAVA Agent Development

Fig. 1. Johnson's rule algorithm.

Fig. 2. Workers Gantt chart.

2017 IEEE Conference on Systems, Process and Control (ICSPC 2017), 15–17 December 2017, Melaka, Malaysia

38

Environment (JADE) is a distributed MAS middleware
framework. Each JADE instance is an independent thread
which contains a set of containers. A container is a group of
agents run under the same JADE runtime instance. Every
platform must contain a main container. A main container
contains two necessary agents which are: an Agent
Management System (AMS) and a Directory Facilitator (DF).
AMS provides a unique ID for every agent under its platform
to be used as an agent communication address. While the DF
announces the services which agents can offer under its
platform, to facilitate the agent services exchange, so that every
agent can obtain its specific goal [10]. JADE applies the
reactive agent architecture which complies with the Foundation
for Intelligent Physical Agent (FIPA) specifications, and
provides a graphical interface to deploy and debug a MAS.
FIPA is an IEEE Computer Society standards organization that
promotes agent-based technology and the interoperability of its
standards with other technologies. JADE agents use FIPA-
Agent Communication Language (FIPA-ACL) to exchange
messages either inside its own platform or with another
platform in a distributed MAS.

V. IMPLEMENTATION OF THE PROPOSED SOLUTION

A. Johnson's scheduling and worker distribution
implementation on Detailed Case-Study
The Case-Study is engaging the production of continuously

incoming jobs or orders. Each order at a minimum contains
information about the configuration of the required products
and the number of these products. A customizable pump was
chosen as an example of a customized order. Each job order
must be processed first by the cobot, and then by one of the
workers. Since the cobot works with relatively constant speed,
it can be assumed that the processing time of each pump by the
cobot is constant. Thus, the total processing time of the job can
be calculated by multiplying the robot time constant (RTC)
parameter by the number of pumps (ni) in the order as it is been
explained in the figure below.

After the cobot has processed the product, the product
enters the buffer on the secondary processing queue at PS1.
PS1, in its turn, consists of two workers whose productivity are
not constant, but it can be predicted by analyzing the previous
production history. One of the simplest and effective method is
averaging. Thus, the time spent on processing an order by one
worker is measured by multiplying the worker's average time
consumption (WiATC) by the number of items in the order (ni).
Each worker has his own schedule and his own buffer, orders
are distributed between them, and thus the total PS2 time will
equal the maximum of the two processing times as shown in
formula 4.

 (4)

This makes the previously chosen distribution algorithm
relevant, because it is aims to balance the load between
workers. The figure below describes the implementation
algorithm of Johnson's rule and worker distribution.

 The workers's processing time is calculated according to
the algorithm described in the third section - WiATC is
multiplied by the sum of all ni of all the scheduled orders. After
selecting the least loaded worker, a suitable job is selected
using the Johnson's rule, which implementation is simplified,
because the TJi@PS1 and TJi@PS2 values are correlated
through ni, so the smallest values will always be in the stage
with the smallest TJi. Thus, if TJi@PS2< TJi@PS1, then all work
by the Johnson's rule should be sorted in ni decreasing order,
i.e. in the array of orders sorted by ni, the order with the largest
ni will be scheduled first. In the case if TJi@PS1< TJi@PS2,
everything will be exactly the opposite and the first order with
lowest ni should be scheduled.

B. First Come First Serve Scheduling
As noted earlier, WiATC is needed to evaluate worker

productivity. This productivity can of course be measured
empirically, but this requires time and several production
cycles performed without using this data (and therefore without
planning). In other words, we are faced with the problem of a
cold start. This is a fairly well-known problem, especially in
the field of recommending systems. It can be solved in a
number of ways, for example, substitution of default data, use
of zero values, etc. However, all of the above measures are
inaccurate and do not allow to correctly sort the jobs for
scheduling. Therefore, we made the decision to use a simple
planning algorithm that does not take into account the worker's
performance, until the accumulation of enough data to use in
the Johnson method. For this case, the usual First Come First
Serve (FCFS) scheduling method is used, which adds job
sequences in the order in which they were batched.

FCFS is applied at the level of planning the interaction of
different stages of production, but the distribution of jobs must
also be performed between the workers of one stage, which
complicates the task. To solve it, the multi-level logic of
revealing an attached worker is used, based on several
parameters: Worker-1 and Worker-2 state – is worker busy or

Fig.3. Case-study manufacturing workcell.

Fig. 4. Worker and robot job scheduling.

2017 IEEE Conference on Systems, Process and Control (ICSPC 2017), 15–17 December 2017, Melaka, Malaysia

39

free; Worker-1 and Worker-2 done counter – the number of
orders successfully processed by this worker; Change Flag - A
special switch that allows to alternate workers in a situation
when all other parameters are equal. Below is a truth table
showing the action taken, depending on these parameters
(Table 1):

Table 1. First Come First Serve Worker Scheduling.

C. Measuring the worker's time and the conditions for
choosing an algorithm

Table 2. Dools Assigments.

Based on the foregoing, the final implementation of the
system should be based on two planning principles - FCFS for
the accumulation of initial data and the Johnson method at the
remaining production time. So, it is necessary to create a
switching mechanism that determines the condition for
changing ordering method. For these purposes, a rule
management system (RMS) Drools is used [11]. It is a form of
an expert system which usually uses an ontology based
representation to codify the input data into a knowledge base

which can be used for reasoning [12]. An RMS depends on two
kinds of memory. The working memory holds the facts which
present the domain knowledge, while the production memory
holds a set of rules which are usually presented in form of
conditional statements [13]. The reasoning engine is a problem
solver which solves a given problem by matching the present
facts with the existing rules [14]. Table 2 describes the rules for
starting an algorithm as well as other start/attachment events.

The calculations of the worker's time can also be seen from
the table. These actions are necessary to measure WiATC.
After assigning a job for the worker, a software timer is turned
on and it stops after receiving an ACL message from the
worker which informs the completion of job. Time difference
is divided by the ni, after this value is summed with the sum of
similar values obtained before, and then divided in half, the
result is WiATC. Below is the calculating formula:

(5)

D. Final HCA Implementation

Figure 5 shows the Graphical User Interface (GUI) of the
implemented case-study. While Figure 6 shows the interaction
and the behaviors model of those holons. The first holon can be
seen in the implementation is the PH with a GUI shown in
Figure 5-a. The PH is generating the pump orders by choosing
the pump size and amount. By pressing send order button, the
product agent which is shown in Figure 6-a triggers a one shot
behavior which to send the pump order via an ACL-message to
the OH. An example of the agent communication via the ACL-
messaging can be seen in Figure 6-b. This ACL-message
contains the pump order details and it has an AGREE
communication act. The OH GUI is shown in Figure 5-d. The
order agent implements a cyclic behavior which continuously
receives the pump orders from the pump agent.

A one shot behavior is triggered by Drools to send a
REQUST-message to the robot agent, which has a cyclic
behavior to continuously receive the order assignments. When
the robot agent receives the REQUST-message, it assigns the
pump order to the cobot via the Robot Holon (RH) GUI as it

Fig. 5. HCA GUI.

2017 IEEE Conference on Systems, Process and Control (ICSPC 2017), 15–17 December 2017, Melaka, Malaysia

40

can be seen in Figure 5-c. Also, the robot agent starts the RTC
timer, in our case study we dedicated a 2.0 seconds value for
the RTC timer. When the RTC timer value is elapsed, the robot
agent sends an INFORM-message to the order agent to inform
it has finished the assigned task. When the order agent receives
a robot done INFORM-message, it fires a new Drools
reasoning session to schedule the existing standing pump
orders due to the decision table rules shown before and the
status of the two workers. Therefore, Drools assigns a task for
the worker by triggers a one shot behavior to send a REQUST-
WHEN-message to the Worker Holon (WH) GUI as it can be
seen in Figure 5-b. When the worker finishes assembling the
pump orders, he presses task done button via his GUI. By
pressing worker task done, the worker agent triggers a one shot
behavior. When the order agent receives a worker done event,
it fires a new Drools session. Drools will calculate the WiATC
every time the order holon receives a worker done event. The
rest of the scheduling will be based on the current WiATC.

The OH-GUI which can be seen in Figure 5-d is showing
the scheduling results. The first two pump orders (CP:1, CP:2)
were scheduled as FCFS and assigned to worker-1 and worker-
2 respectively. This is because neither worker-1 nor worker-2
were done by assembling any previous orders until that
instance. When worker-2 has finished CP:2, W2ATC could be
calculated as 4.91 seconds which is greater than the value of
RTC (i.e., 2.0 seconds). Thus, Johnson algorithm could be
applied via using the previously mentioned formulas, therefore
CP:6 has been assigned to worker-2. When worker-1 has
finished CP:1, W1ATC could be calculated as 1.96 seconds
which is less than the value of RTC (i.e., 2.0 seconds),
therefore CP:8 has been assigned to worker-1 via Johnson
algorithm. Furthermore, the rest of the orders at Figure 5-d are
scheduled in a similar manner.

VI. CONCLUSION

As a result of this work, a method was found for planning
the interaction between the cobot and two workers and
scheduling the jobs among them within the same production
cell. The task under consideration was divided into two steps -
the distribution of work between the production stages and the
distribution of work within the production stage. For the first
case, Johnston's method was used, which proved to be very
useful in solving such problems. While the distribution of work
among workers was based on a more complex pattern of

predictions using worker average time (WiATC). The solution
was successfully implemented on the basis of multi-agent HCA
architecture, the algorithmic basis of the solution was
developed as well as the graphic shell, which allows to use the
existing solution at the program level in real conditions.

During the case-study implementation it has been noted that
when the value of WiATC is greater than RTC, Johnson
algorithm tends to schedule the jobs based on ascending the
number of required units. On the contrary, Johnson algorithm
tends to schedule the jobs based on descending the number of
required units if the value of WiATC is greater than RTC.

Nevertheless, the topic under consideration has not been
exhausted, and further promising topics are the increase in the
number of agents in the production cell, as well as the
improvement of algorithms for predicting employee
productivity and the introduction of a system for calculating its
productivity factor.

REFERENCES

[1] Hoda A. Elmaraghy, “Flexible and reconfigurable manufacturing
systems paradigms”, International Journal of Flexible Manufacturing
Systems, vol. 17, Issue 4, pp 261-276, October 2005.

[2] A.R. Sadik, B. Urban, “A Holonic Control System Design for a Human
& Industrial Robot Cooperative Workcell,” IEEE-ICARSC, pp. 118-
123, 2006.

[3] G. Michalos, S. Makris, J. Spiliotopoulos, I. Misios, P. Tsarouchi, G.
Chryssolouris, "ROBO-PARTNER: Seamless Human-Robot
Cooperation for Intelligent, Flexible and Safe Operations in the
Assembly Factories of the Future", Procedia CIRP, vol. 23, pp. 71-76,
2014.

[4] A.R. Sadik, B. Urban, “Combining Adaptive Holonic Control and ISA-
95 Architectures to Self-Organize the Interaction in a Worker-Industrial
Robot Cooperative Workcell,” Future Internet, vol. 9, Issue 35, 2017.

[5] W. Grzechca, "Manufacturing in Flow Shop and Assembly Line
Structure", International Journal of Materials, Mechanics and
Manufacturing, vol. 4, no. 1, pp. 25-30, 2015.

[6] W. Stevenson, P. Ness, “Study Guide for Use with
Production/Operations Management,” McGraw-Hill: USA, 1999.

[7] S. Pellegrinelli, F. Moro, N. Pedrocchi, L. Molinari Tosatti, T. Tolio “A
probabilistic approach to workspace sharing for human–robot
cooperation in assembly tasks,” CIRP Ann.-Manuf. Technol., vol. 65,
pp. 57–60, 2016

[8] R. Babiceanu and F. Chen, "Development and Applications of Holonic
Manufacturing Systems: A Survey", Journal of Intelligent
Manufacturing, vol. 17, Issue 1, pp. 111-131, 2006.

[9] W. Shen, Q. Hao, H. Yoon and D. Norrie, "Applications of agent-based
systems in intelligent manufacturing: An updated review," Advanced
Engineering Informatics, vol. 20, no. 4, pp. 415-431, 2006.

[10] W. Teahan, Artificial Intelligence – Agent Behaviour, 1st ed.
BookBoon, 2010.

[11] A. Ordóñez, L. Eraso, H. Ordóñez, L. Merchan, “Comparing Drools and Ontology
Reasoning Approaches for Automated Monitoring in Telecommunication
Processes,” Procedia Computer Science, vol. 95, pp. 353-360, 2016.

[12] A. Ordóñez, L. Eraso, H. Ordóñez, L. Merchan, "Comparing Drools and Ontology
Reasoning Approaches for Automated Monitoring in Telecommunication
Processes," Procedia Computer Science, vol. 95, pp. 353-360, 2016.

[13] "Drools Expert User Guide", Docs.jboss.org, 2017. [Online]. Available:
https://docs.jboss.org/drools/release/5.2.0.CR1/drools-expert-docs/html_single/ .

[14] N. Kapoor and N. Bahl, "Comparative Study Of Forward And Backward
Chaining In Artificial Intelligence", International Journal Of Engineering And
Computer Science, 2016.

Fig. 6. Interaction of Holons.

2017 IEEE Conference on Systems, Process and Control (ICSPC 2017), 15–17 December 2017, Melaka, Malaysia

41

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

