Generative Machine Learning for
Resource-Aware 5G and IoT Systems

Nico Piatkowski
Fraunhofer IAIS
nico.piatkowski@iais.fraunhofer.de

Adam Bachorek
Fraunhofer IESE
adam.bachorek @iese.fraunhofer.de

Andreas Morgenstern
Fraunhofer IESE
andreas.morgenstern @iese.fraunhofer.de

Abstract—Extrapolations predict that the sheer number of
Internet-of-Things (IoT) devices will exceed 40 billion in the next
five years. Hand-crafting specialized energy models and moni-
toring sub-systems for each type of device is error prone, costly,
and sometimes infeasible. In order to detect abnormal or faulty
behavior as well as inefficient resource usage autonomously, it
is of tremendous importance to endow upcoming IoT and 5G
devices with sufficient intelligence to deduce an energy model
from their own resource usage data. Such models can in-turn be
applied to predict upcoming resource consumption and to detect
system behavior that deviates from normal states. To this end, we
investigate a special class of undirected probabilistic graphical
model, the so-called integer Markov random fields (IntMRF).
On the one hand, this model learns a full generative probability
distribution over all possible states of the system—allowing us to
predict system states and to measure the probability of observed
states. On the other hand, IntMRFs are themselves designed to
consume as less resources as possible—e.g., faithful modelling
of systems with an exponentially large number of states, by
using only 8-bit unsigned integer arithmetic and less than 16KB
memory. We explain how IntMRFs can be applied to model
the resource consumption and the system behavior of an IoT
device and a 5G core network component, both under various
workloads. Our results suggest, that the machine learning model
can represent important characteristics of our two test systems
and deliver reasonable predictions of the power consumption.

Index Terms—generative model, probabilistic graphical model,
internet of things, 5G core, energy model

I. INTRODUCTION

The current generation of IoT appliances is cloud-centered:
sensor data is collected at the edge and offloaded, pre-
processed, and analyzed on large centralized cloud systems.
The amount of data that is transferred every day between IoT
nodes and the cloud as well as the resulting energy consump-
tion are enormous. Offloading even simple computational tasks
to the cloud is thus nonsustainable and should be prevented.

This work was funded by the Fraunhofer research program on Trusted
Resource Aware Information and Communication Technology, TRAICT.

Johannes S. Mueller-Roemer
Fraunhofer IGD & TU Darmstadt
johannes.mueller-roemer @igd.fraunhofer.de

Tim Werner
Fraunhofer IOSB-AST
tim.werner @iosb-ast.fraunhofer.de

Peter Hasse
Fraunhofer FOKUS
peter.hasse @fokus.fraunhofer.de

Pascal Birnstill
Fraunhofer IOSB
pascal.birnstill@iosb.fraunhofer.de

Lutz Stobbe
Fraunhofer IZM
lutz.stobbe @izm.fraunhofer.de

Fig. 1.

Out custom measurement platform used for the evaluation of 5G
core components. Huawei BBU5900 base band unit and Keysight AC6803B
energy measurement device.

At the same time, recent advances in probabilistic ma-
chine learning deliver results in a quality that was previously
unheard-of. Domains in which the output of machine learning
can hardly be distinguished from real-world data include
synthetic image generation and the generation textual natural
language. However, the IoT and 5G community does not yet
benefit from these methods due to their ludicrous resource
requirements [1]. Learning a generative model of the system
itself would yet allow us to improve its energy management
without the need for hand-crafted rules.

We hence aim at the conception of probabilistic machine
learning models for the energy consumption of IoT devices and
5G infrastructure hardware components. Once learned, such
a model allows us to process various probabilistic queries.
Typical applications include the prediction of a system’s

energy consumption based on its current usage behavior
and the automatic detection of abnormal or malfunctioning
behavior—core features of any resource aware and trustworthy
system. Energy models can also be used in an early phase of
design space exploration that is based on simulations [2]. For
example, having a realistic energy model of the individual 5G
components and coupling them in a holistic simulation model
for a complete 5G mobile network with realistic user profiles
would allow us to find the most power-efficient architectures
for next-gen mobile networks. This requires to (1) acquiring
appropriate training data, and (2) choosing an appropriate
machine learning model. In the context of resource aware 5G
systems, the resource consumption (in terms of computation,
memory, and energy requirements) of the machine learning
model shall be negligible compared to the primary function of
the underlying system. It should be possible to run learning
as well as inference in the system itself without a significant
increase in the system’s energy consumption. For this reason,
integer Markov random fields (IntMRF) are considered, since
they can approximate arbitrary probability mass functions
while having only minimal hardware requirements, e.g. they
have been applied successfully in ultra-low-power (ULP)
micro controller units (MCU) [3].

Learning a probabilistic model is based on a data set of
sensor measurements which reflect realizations of the un-
derlying random variable of interest: In a 5G setting, this
could include the configuration of a multiple input multiple
output (MIMO) antenna array, current data rates, the system
temperature, CPU utilization, and measurements of the current
energy consumption.

In order to benefit from model predictions for controlling
and optimizing energy consumption, we need to integrate
energy consumption models into monitoring frameworks that
are capable of intercepting and controlling computation and
possibly communication processes. Such frameworks are sub-
ject of research in the area of cyber security under the term
usage control. Usage control frameworks such as [4] allow us
to specify constraints in so-called policies, i.e., logical rules.
Actions intercepted by a monitoring component are evaluated
against these policies, whereby the reasoning component can
also draw on external sources of information and knowledge,
such as requesting energy consumption predictions for ob-
served actions with certain parameters or properties. For exam-
ple, control measures like maintaining (increasing/decreasing)
energy budgets for specific user, groups, purposes, or in
reaction to specific events can be implemented based on such
policy enforcement infrastructures, but also rescheduling of
computation tasks so as to leverage an energy surplus in the
network or temporarily cheap energy. In other words, energy
consumption models can augment a usage control framework
with energy consumption control capabilities so as to add a
further dimension to control measures, which in particular
supports resource-efficient computing.

In this work, we explain how to learn generative probabilis-
tic machine learning models of the system behavior for IoT
and 5G devices. To this end, we collected data from different

systems and conducted a qualitative evaluation of generative
machine learning models on these data sets. Measurements
are taken from real 5G campus network hardware as well as
state-of-the-art GPU accelerated IoT hardware as explained in
Sec. III. Our results suggest, that the machine learning model
can represent important characteristics of two test systems and
deliver reasonable predictions of the power consumption.

II. METHODOLOGY

For sake of completeness, we provide an overview on learn-
ing and inference with integer Markov random fields [5] which
belong to the broader class of exponential family models
[3]. In what follows, X is a n-dimensional discrete random
variable with state space X. The central model equation is
given by

Po(X =) = 9(0.6(x))—A(6) (1)

where 8 € N is a vector of model parameters, ¢ is a
feature map into a reproducing kernel Hilbert space, and
A =1logy Y, 209¢@) is the partition function (also known
as normalization constant). Due to discreteness of X, ¢ is a
d-dimensional binary vector with finite dimension d, and fully
specified by the conditional independence structure G of X.
Note that this implies Py : X — QN [0; 1]. Learning integer
MREF consists of two step:

a) Step 1: Structure Learning.: Each and every multi di-
mensional random variable posses a conditional independence
structure, representable by a graph G = (V, E) with vertex
set V and edge set . Each vertex in V' corresponds to one
dimension of X, and thus |V'| = n. Whenever G is connected,
all dimension of X are not mutually independent. Moreover, G
tells us which variables need to be known to fully determine
the distribution of any vertex v in V—namely the directly
adjacent neighbors of v. An important quantity that underlies
most structure learning algorithms is the multi-dimensional
mutual information of a subset of variables S C V'

I(Xs) =~ 3 (~)MH(X) .

MCS

Here, sub-scripting a random variable with a vertex subset,
e.g., X g, indicates the |S|-dimensional sub-vector of X that
contains all dimensions in S in an arbitrary but fixed order.
Moreover, H denotes the information entropy, defined via

H(Xm)=— > Plaw)logPlay) .
Ty EXM
Generic procedures for estimating the conditional indepen-
dence structure can be found in [6]-[8].

b) Step 2: Parameter Learning.: Once the conditional
independence structure G has been discovered, the model
parameters 6 are fitted to the training data via the regularized
maximum-likelihood method. The learning problem stems
from a constrained maximum-entropy principle. We aim at
finding a probability distribution which is parametrized by
integers and resembles the distribution of our training data
points, while staying as close as possible to the uniform dis-
tribution. Hence, introducing as few assumptions on the data

generating process as possible. The corresponding objective
function is

((8) = A(8) — (8. 1) + \R(6) @)

where f1 = 1/N) 5, ¢(x) is the average feature space repre-
sentation of the training data, R(0) = Z?:l 1—11-2(6;]—
0,)| is a regularizer that enforces the integrality constraint
0 € N%, and \ > 0 is the corresponding regularization weight.
The regularizer R(0) allows us to optimize ¢ as if 0 is real-
valued while still generating an integral solution € N%,
The gradient of the smooth part of ¢ (R is nonsmooth) is
given by
Ve (0) = fi 3)

where 1 =), Po(x)p(x) is the expected feature space
representation of the model (1). Equation (3) is precisely the
only step where the training data enters the learning proce-
dure. How to prepare training data from raw measurements
(including the discretization) is discussed in Section III.

The objective function (2) is then minimized via an proximal
first-order method [9]-[11]. As shown in [3], the whole
training procedure can be implemented such that only integer
arithmetic is required and that all intermediate results are
integers—this is the main reason for why this model class
is especially well-suited for resource constrained devices.
The only requirement to achieve integrality of the training
procedure is the integrality of the inference step (which is
executed various times during training).

A. Probabilistic inference

Given a structure GG and some (not necessary optimal)
parameter vector 6, an inference algorithm can be applied to
compute conditional and unconditional marginal probabilities
for arbitrary subset of V. This step is also required for the
gradient computation during training, since it can be shown
that g from (3) consists of all marginal probabilities for all
cliques (maximally connected vertex subsets) of G. In what
follows, we assume that G is a tree structure to simplify
notation. Various techniques exist which rely on simplifying
assumptions w.r.t. the structure or the model parameters [12].
The inference algorithm presented here consists of sending
so-called messages ms_,; from each vertex s to all of it’s
neighboring vertices t—we denote the set of s’s neighbors by

N(s).

ms_i(y) = bl Z QOst=ryt L wen (i Mu—a(®) (4
reEX,

Here, bl denotes the bit-length of an integer and 0y—gy
is the model weight for having vertices s and ¢ jointly in
the states x and y, respectively. Since messages are defined
recursively, they must be re-computed in an arbitrary order
until convergence, which is guaranteed by assuming that G is
a tree structure.

The numbers that appear as intermediate results during the
computation of (4) can become quite large. However, the terms
in the summation are integer powers of two, which implies

TABLE I
PROBLEM SIZES OF THE FE SIMULATIONS THAT WERE RUN DURING DATA
COLLECTION. NNZ DENOTES THE NUMBER OF NONZERO 3 X 3-BLOCKS IN
THE SPARSE SYSTEM MATRIX.

i Nodes Elements NNZ
0 2872 7749 29848
1 2872 7749 29848
2 1044195 5735785 15037425
3 144761 719084 1979697
4 210482 1071293 2914402
5 326218 1702793 4575636
6 548555 2935282 7792611
7 2872 7749 29848
8 69636 312441 899582
9 259486 1351435 3619154
10 66840 324561 899478

that the result will contain at most |X| 1-bits. We can hence
compute the bit-length of very large intermediate numbers with
only |Xs|w bits, where w is the word-size of the underlying
compute architecture.

Finally, probabilistic inference is the main reason why
we choose MRFs as our underlying machine model. Dis-
criminative learning models (like support vector machines
or feed forward neural networks) have been studied in the
context of resource limitations [13]. However, they have a
fixed input-output relation: given observed input variables
x = (x1,x2,...,2,), they predict their output variable(s) y.
In generative models (like MRFs), these roles are not fixed.
They give us the freedom to solve energy modelling, anomaly
detection, simulation, and other tasks with the very same
model—without the need for learning a specialized model for
each task separately.

III. DATA

Data from two sources is collected and pre-processed
for learning the IntMRF: an NVIDIA Jetson board and a
Open5GCore [14] running on an Intel(R) Core(TM) i5-9500T
in combination with an Huawei BBU5900 and indoor cells.
Energy consumption of the Jetson board is measured with the
internal sensors while energy consumption of the 5G platform
is measured with the CPU built-in sensors via RAPL as well
as external energy meters (AC6830B).

A. IoT Device

The IoT raw data is collected on an NVIDIA Jetson AGX
Xavier Developer Kit [15]. The hardware platform contains
an 8-core ARM v8.2 64-bit CPU with 8MB L2 and 4MB
L3 Cache. In addition, the system is endowed with a 512-core
Volta GPU, 32GB LPDDR4x main memory, and 32GB eMMC
5.1 flash storage for the operating system and additional
applications.

Workload is generated via the finite element (FE) simu-
lation RISTRA [16]. RISTRA is a highly optimized, GPU-
accelerated FE simulation package that performs both system
assembly [17] and solution [18] on the GPU, while making
use of the 3x3-block structure of the system matrices [19].

Multiple series of measurements are conducted, where each
measurement is composed of the following steps:

1) Select a POWER-MODE (1-6), setting the number of
active cores and frequency ranges for the Jetson board.

2) Bring the system to an IDLE mode, i.e., a mode in
which the system has no significant workload. We let
the system idle for at least 120s between simulation
runs to ensure initial temperatures and clock rates are
similar between measurements.

3) Begin recording system information via the NVIDIA
tegrastats tool every 100ms. The sampling rate
of 100 ms was chosen to minimize measurement over-
head while providing a sufficient number of samples
to resolve individual simulation modes (see below).
The sensed values include indicators for the work-
load, like CPU utilization and memory consumption,
as well as multiple temperature and energy measure-
ments for various system components. Available sen-
sors/measurements are: RAM currently in use, largest
free block size (max. 4MB), number of free blocks
available to allocator, swap memory in use, amount of
swap memory cached, per core CPU utilization in %, per
core CPU clock frequency in MHz, GPU usage in %,
always-on temperature sensor located near SOC, GPU
cluster center temperature sensor, external sensor near
SoC center, temperature near computer vision cluster,
CPU cluster center temperature sensor, weighted average
of temperatures (for fan control), external board tem-
perature sensor, GPU power draw, CPU power draw,
power draw of misc. SoC clusters, DRAM controller
power draw, and the power draw of other board com-
ponents. We augment the provided measurements with
a timestamp by piping the unbuffered output into a line
timestamping tool.

4) After ~ 10s of recording, start RISTRA with configu-
ration 7; to generate workload on the device. The simu-
lation software can be in different modes like, loading,
simulation, or post-processing. In addition to the system
sensors, the mode of the simulation is timestamped and
logged whenever a mode transition occurs. An example
is shown in Fig. 2. To simulate a varying load, after
starting RISTRA, the system is assembled once and
simulations are performed 10 times, with 10s breaks
in between, where RISTRA remains running, keeping
the system matrix in memory.

5) Stop recording of system information ~ 10s after the
workload has ended.

This has been carried out for 11 different configurations
T0,...,T1o Of the FE simulation. Each configuration covers
a different model complexity. Thus, each configuration will
incur a different workload. Most relevant for the workload are
the problem sizes which are solved by the FE simulation—
corresponding values can be found in Tab. I'. For each 7,

IThe mesh used in models 0, 1 and 7 is identical, with varying convergence
threshold between 104 and 10~ 6. The other models use 10~ consistently.

measurement was repeated 11 times. A data sample is a point
in time for which all sensor measurements are known. In
total, 4060414, 37-dimensional raw data samples have been
collected on the IoT device.

B. 5G Core Network Component

The logical architecture of our custom 5G measurement
platform consists of diverse monitoring facilities and mea-
surement instruments, the measurement system as well as the
actual system under test (SUT). In the focus of the considered
measurement campaign is the 5G core network based on
the Open5GCore implementation configured for campus/edge
mode of operation. The tested hardware is deployed on 4 SUTs
which are run by LX2160A 16 Core ARM64 A72, AMD
Ryzen 5 PRO 3400GE (8 Core x86/AMD64), Intel Core i5-
9500T (6 Core x86/AMD64), and Intel Xeon D-2123IT (8
Core x86/AMD64), respectively?. This is complemented by a
base band unit (BBU), remote radio head (RRH) and a radio
hub (confer Fig. 1). External energy measurements are per-
formed by an AC6803B from Keysight via the VISTA protocol
whereas internal measurements of the energy consumption
caused by CPU, RAM, and GPU are conducted via the PERF
/ RAPL API [20]. In order to measure the user equipment,
RDTech UM25C are utilized. Measured data values are stored
in an InfluxDB timeseries database. Multiple repetitions of
experiment have been conducted which consist of:

1) User hardware (5G-UE) is attached to the core network

2) Four scenarios are executed: traffic is send for 60
seconds in upstream (5G_UP_1) and downstream
(5G_DOWN_1) direction. 1024MB of data is trans-
mitted in upstream (5G_UP_2) and downstream
(5G_DOWN__2) direction.

3) Measurement data is collected and pushed to the
database. Available sensors/measurements are: BBU
power consumption, core network power consumption,
5G downstream (MBit/s), 5G upstream (MBits/s),
RAPL power consumption (CPU cores), RAPL power
consumption (package), RAPL power consumption
(RAM), CPU usage system, and CPU usage user. An
additional variable encodes the scenario with values in
{0,5G_UP_1,5G_UP_2,5G_DOWN_1, 5G_DOWN_2},
where 0 indicates an IDLE mode. All measurements
are timestamped.

In total, 106668 raw data samples have been collected.

C. Pre-processing

Let us now explain how the raw data samples from the IoT
device and the 5G system are pre-processed for learning a
generative model of the underlying data generating processes.

While the setup of the IoT system delivered a valid value for
all sensors every 100 ms, the sensors of our 5G infrastructure
component have different temporal resolutions. That is, the
system and user CPU utilization are recorded every 300 ms

2Due to access restrictions while COVID19 lock down, measurements used
in this paper could only be conducted on the Intel i5 platform.

3143178
3143254
3143493
3144243
3144397
3144400
3154400
3154548

RISTRA_STARTING
RISTRA_LOADING_MODEL
RISTRA_PREPARING_SOLVER
RISTRA_SIMULATING
RISTRA_POSTPROCESSING
RISTRA_IDLE
RISTRA_SIMULATING
RISTRA_POSTPROCESSING
3235721
3235895
3235898
3245958

RISTRA_SIMULATING
RISTRA_POSTPROCESSING
RISTRA_IDLE
RISTRA_STOPPED

Fig. 2. Timestamped mode sequence, generated by the RISTRA FE simula-
tion.

while the other sensors are queried once per second. More-
over, measurements of RAPL, 5G network traffic, and BBU
power are not synchronized. All measurements where hence
aggregated by taking the maximum measured value of each
sensor during one second. After aggregation, Nsg = 35521,
nse = 10-dimensional samples are available for learning
the energy model of the 5G system. Since no aggregation
has been performed on the IoT data, all N, = 4060414,
nioT = 37-dimensional samples are available for learning the
energy models of the IoT system.

Integer Markov random fields are discrete models—they
have no native representation for numerical data. We thus
employ an equal frequency binning with k& € {64, 128} bins as
follows: For each sensor, we sort all measured values and parti-
tion the full data range into k subsets, such that all subsets have
almost® identical size. Within each bin b;,i € {1,2,...,k}, we
estimate the parameters p; and o; of a Gaussian distribution.
This allows us to convert discrete states of the integer model
back to the original numerical domain, e.g., via sampling from
the corresponding Gaussian truncated at the bin-boundaries.
The resulting discretized data sets are denoted by Df . and
Dk, for k € {64,128}.

IV. NUMERICAL EVALUATION

We conduct the following numerical experiment to exem-
plify the capabilities of the proposed method. Integer Markov
random fields are learned for both IoT and 5G scenarios, by
minimizing Eq. (2) for 1000 iterations of the proximal gra-
dient algorithm. The corresponding conditional independence
structures are learned with the Chow-Liu algorithm [6]. For
training, the data sets DF . and DE are used. We kept the
last 1000 data points out of the learning procedure. After
learning, we take those 1000 hold-out data points and use
the probabilistic model to sample all sensor values, given
the observed system mode. For the IoT system, the observed
mode is given by the internal mode of the RISTRA simulation
(cf. Section 2) together with its parameters 7;. For the 5G

3 A perfect split in which all sets have equal size is only possible if N is
a multiple of k.

setup, the system mode is defined by the upstream/downstream
scenario as described in Section III-B. Excerpts of our results
are visualized in Fig. 3. Therein, the first two plots (from left to
right), show the energy consumption and the downstream 5G
utilization of the 5G system over time. The third plot shows
the power draw of the IoT system’s CPU over time. Light
grey points show actually measured values from the data set.
Dark grey points show values which are sampled from the
learned probabilistic model. The background color indicates
the mode of the system—those modes are the only input to the
probabilistic model for generating the samples from Pg. We
see that the distribution of the 5G system samples matches the
distribution of the ground truth data, which indicates that our
model approximates the underlying data generating process
well. About 5% of all samples of the energy consumption for
the IoT model overshoot the true consumption, which might
indicated the the learned Chow-Liu structure is not sufficient
and that a higher-order model is required. Nevertheless, 95%
of all samples are well-behaved.

It is, however, important to understand that due to the
generative nature of our model, the prediction error and other
metrics that we usually consult to assess the quality of a
machine learning model are meaningless in the generative
setup at hand. As mentioned before, the only information
that we provide to the model is the mode of the system,
e.g., RISTRA_PREPARING_SOLVER for the IoT system (cf.
Fig. 2) or 5G_DOWN_2 for the 5G system. Since we employ
our model to sample from Py(- | mode), a reasonable
quantitative quality measure is the log-likelihood itself, i.e.,
Eq. (2) without the regularization term AR(6). The average
(instance-wise) log-likelihood, is —22.405 for the 5G model
and —18.655 for the IoT model.

V. DISCUSSION

We presented a novel generative approach for modelling the
resource consumption of IoT and 5G systems. The resulting
model can be used to address various tasks like predicting the
upcoming energy consumption of a system or detecting devi-
ation from normal system behavior. Data has been collected
on real 5G and IoT platforms under benchmark workloads.
Numerical experiments verified, that models which are learned
on this data can faithfully represent the distribution of power
consumption and bandwidth utilization of a 5G system.

One way to apply our model is as part of an intelligent
energy management, e.g., to decide if CPU or bandwidth has
to be throttled to stay within a user specified energy budget.
Another interesting application of our model is in the context
of simulation.

The most widespread used approach in the simulation
community is the manual creation of behavior models using
mathematical-physical modeling in the sense of a white box
model of the subsystems and processes involved. Often this
is combined with some experimental steps where the input
and output variables of a system are evaluated on a test-
bench and the so-captured data is fed back into the white-
box model to make it more accurate. This usually involves

104

Power consumption [W]

5G - AC6803B

5G - Downstream

loT - CPU
o Te ® | (es0 ® ®© @0 w0 @ ve S
[r L] ' o L] ® True
ce ° o o 2250
¥ '. K . ‘ ° ® © Sample
0] o | Bp & o ,
'S o‘, A 20001 @ .
o o0 _ .
3 . ’ 2 1750 "
% 60 E L .
4 c
2 ° § 1500 A o0 . o ‘
£ o¥ True N > ol |l I J ° o0 oo
g ® Sample 5
Ea{ o ® oo @ e o e® o g 120 " Al » b P lie
@ © e® o L4 » o
5 1000
5 e0es % o ¢ ® o0 ® escece
20 750
beame © Gsons
500
CENe o ®e emom oo @e @ ® ({ GEND GED CEND GED GNP G GED D o 250
0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000
Time [s] Time [s] Time [ms]

Fig. 3. Visual comparison of ground truth and samples from the machine learning model for the 5G core network component (left and mid), as well as the
IoT system (right). Background colors indicate different modes of the system.

a lot of manual effort and while it often leads to highly
accurate models, this comes with the price of low execution
performance. For example, [21] discusses energy simulations
of CPUs based on the Gem5 simulator. The Gem5 Simulator
[22] is computer architecture simulator system that provides
simulation models of ARM CPU cores, DRAMSs, caches, I/O
devices and more. While this approach is possible up to the
level of individual devices like a single IoT Device, it is not
possible to use this approach in a holistic system of systems
simulation. Here, we could apply a learned energy model
instead. Moreover, in a 5G-setting, a simulation down to the
individual CPU cycles is not necessary. What we’re instead
aiming at are functional models of the individual entities that
are coupled with the energy models that we proposed in this
article. Finally, since we use lightweight machine learning
models, our methods may run autonomously inside network
components, e.g., smartphones or 5G base stations, to facilitate
an intelligent energy management in the next generation of
network devices.

[1]

[2]

[3]

[4]
[5]

REFERENCES

E. Strubell, A. Ganesh, and A. McCallum, “Energy and policy consid-
erations for deep learning in NLP,” in Conference of the Association for
Computational Linguistics, 2019, pp. 3645-3650.

L. von Rueden, S. Mayer, R. Sifa, C. Bauckhage, and J. Garcke,
“Combining machine learning and simulation to a hybrid modelling
approach: Current and future directions,” in International Symposium
on Intelligent Data Analysis. Springer, 2020, pp. 548-560.

N. Piatkowski, “Exponential families on resource-constrained systems,”
Dissertation, Fakultéit fiir Informatik, TU Dortmund, 2018. [Online].
Available: http://hdl.handle.net/2003/36877

A. Pretschner, M. Hilty, and D. Basin, “Distributed usage control,”
Communications of the ACM, vol. 49, no. 9, pp. 3944, 2006.

N. Piatkowski, S. Lee, and K. Morik, “Integer undirected graphical
models for resource-constrained systems,” Neurocomputing, vol. 173,
Part 1, pp. 9-23, 2016.

C. K. Chow and C. N. Liu, “Approximating discrete probability distribu-
tions with dependence trees,” IEEE Transactions on Information Theory,
vol. 14, no. 3, pp. 462-467, May 1968.

E. Kovéacs and T. Szantai, On the Approximation of a Discrete Mul-
tivariate Probability Distribution Using the New Concept of t-Cherry
Junction Tree. Springer Berlin Heidelberg, 2010, pp. 39-56.

K. Rantanen, A. Hyttinen, and M. Jirvisalo, “Learning chordal
Markov networks via branch and bound,” in Advances in
Neural Information Processing Systems, 1. Guyon, U. v. Luxburg,

[9]

[10]
(1]

[12]

[13]

[14]

[15]

[16]

(171

(18]

[19]

[20]

[21]

[22]

S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and

R. Garnett, Eds. Curran Associates, Inc., 2017, pp. 1847-1857.
[Online]. Available: http://papers.nips.cc/paper/6781-learning-chordal-

markov-networks-via-branch-and-bound.pdf

Y. Nesterov, “A method of solving a convex programming problem with
convergence rate O(1/k?2),” Soviet Mathematics Doklady, vol. 27, no. 2,
pp- 372-376, 1983.

——, “Smooth minimization of non-smooth functions,” Mathematical
Programming, vol. 103, no. 1, pp. 127-152, 2005.

N. Parikh and S. Boyd, “Proximal algorithms,” Foundations and Trends
in Optimization, vol. 1, no. 3, pp. 127-239, 2014.

N. Piatkowski and K. Morik, “Stochastic discrete clenshaw-curtis
quadrature,” in International Conference on Machine Learning (ICML),
ser. JMLR Workshop and Conference Proceedings, M. Balcan and
K. Q. Weinberger, Eds., vol. 48. JMLR.org, 2016, pp. 3000-3009.
[Online]. Available: http://proceedings.mlr.press/v48/piatkowskil6.html
B. Sliwa, N. Piatkowski, and C. Wietfeld, “LIMITS: lightweight machine
learning for iot systems with resource limitations,” in /EEE International
Conference on Communications (ICC), 2020, pp. 1-7.
Fraunhofer FOKUS, “Open5GCore openSgcore
mobile core network testbed platform.” [Online].
https://www.open5gcore.org/

NVIDIA Corporation, “Jetson AGX Xavier Developer Kit,” 2018.
[Online]. Available: https://developer.nvidia.com/embedded/buy/jetson-
agx-xavier-devkit

Fraunhofer IGD, “RISTRA - Rapid interactive structural analysis.”
[Online]. Available: https://www.igd.fraunhofer.de/en/projects/ristra-
rapid-interactive-structural-analysis

J. Mueller-Roemer and A. Stork, “GPU-based polynomial finite element
matrix assembly for simplex meshes,” Comput. Graph. Forum, vol. 37,
no. 7, pp. 443-454, 2018.

D. Weber, J. Bender, M. Schnoes, A. Stork, and D. W. Fellner, “Efficient
GPU data structures and methods to solve sparse linear systems in
dynamics applications,” Comput. Graph. Forum, vol. 32, no. 1, pp. 16—
26, 2013.

J. S. Mueller-Roemer, A. Stork, and D. Fellner, “Analysis of schedule
and layout tuning for sparse matrices with compound entries on GPUs,”
Comput. Graph. Forum, vol. 39, no. 6, pp. 133-143, 2020.

Intel CORPORATION, “RAPL - running average power limit.”
[Online]. Available: https://01.org/blogs/2014/running-average-power-
limit-—rapl

B. K. Reddy, M. J. Walker, D. Balsamo, S. Diestelhorst, B. M. Al-
Hashimi, and G. V. Merrett, “Empirical CPU power modelling and esti-
mation in the gem5 simulator,” in 2017 27th International Symposium on
Power and Timing Modeling, Optimization and Simulation (PATMOS),
2017, pp. 1-8.

N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi,
A. Basu, J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen,
K. Sewell, M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The
gem5 simulator,” vol. 39, no. 2, p. 1-7, Aug. 2011. [Online]. Available:
https://doi.org/10.1145/2024716.2024718

the next
Available:

